共查询到19条相似文献,搜索用时 78 毫秒
1.
随着网络安全防范意识增强,加密通信占据主流,加密流量快速增长。流量加密在保护隐私的同时,也掩饰非法企图,改变威胁形式。深度学习作为机器学习领域的重要分支,是流量分类的有力工具。近年来,将深度学习方法应用于入侵检测的研究不断深入,取得良好效果。在深入调研文献的基础上,将加密恶意流量检测的步骤总结归纳为“六步法”的一般检测框架模型,结合模型对数据处理及检测算法进行回顾总结,指出各类算法模型的优缺点,并对未来研究方向进行展望,以期为下一步研究提供帮助。 相似文献
2.
恶意加密流量的识别是网络安全管理的一项重要内容。然而,随着网络用户的增加,网络流量的数量和种类正以指数级增加,这给网络安全管理带来了新的挑战和威胁。传统的恶意加密流量识别方法依赖专家经验,且对恶意加密流量特征区分能力不强,不适用目前复杂网络的场景。本文提出了基于多头注意力的恶意加密流量检测方法,通过多头注意力,流量特征可以被映射到多个子空间并进行高阶流量特征的提取,通过一维卷积神经网络进一步提取数据包内部的空间特征。实验结果表明,该方法在CTU数据集上对正常、恶意加密流量的二分类取得了优异的检测效果。 相似文献
3.
4.
网络流量加密在保护企业数据和用户隐私的同时,也为恶意流量检测带来新的挑战.根据处理加密流量的方式不同,加密恶意流量检测可分为主动检测和被动检测.主动检测包括对流量解密后的检测和基于可搜索加密技术的检测,其研究重点是隐私安全的保障和检测效率的提升,主要分析可信执行环境和可控传输协议等保障措施的应用.被动检测是在用户无感知且不执行任何加密或解密操作的前提下,识别加密恶意流量的检测方法,其研究重点是特征的选择与构建,主要从侧信道特征、明文特征和原始流量等 3 类特征分析相关检测方法,给出有关模型的实验评估结论.最后,从混淆流量特征、干扰学习算法和隐藏相关信息等角度,分析加密恶意流量检测对抗研究的可实施性. 相似文献
5.
6.
近年来,随着网络加密技术的普及,使用网络加密技术的恶意攻击事件也在逐年增长,依赖于数据包内容的传统检测方法如今已经无法有效地应对隐藏在加密流量中的恶意软件攻击.为了能够应对不同协议下的加密恶意流量检测,提出了基于ProfileHMM的加密恶意流量检测算法.该方法利用生物信息学上的基因序列比对分析,通过匹配关键基因子序列,实现识别加密攻击流量的能力.通过使用开源数据集在不同条件下进行实验,结果表明了算法的有效性.此外,设计了两种规避检测的方法,通过实验验证了算法具有较好的抗规避检测的能力.与已有研究相比,该工作具有应用场景广泛以及检测准确率较高的特点,为基于加密流量的恶意软件检测研究领域提供了一种较为有效的解决方案. 相似文献
7.
域名生成算法(DGA)存在变化多、部分类别样本难获取的特点,使得采用传统机器学习的恶意域名检测模型准确性不高.提出一种基于迁移学习和多核CNN的小样本DGA恶意域名检测模型.该模型将目标域名映射到向量空间中,使用样本充足的DGA种类进行预训练,并迁移预训练得到的参数到小样本检测模型.采用多核CNN小样本分类模型根据发音... 相似文献
8.
针对现有恶意域名检测算法对于新出现或新变种等小样本恶意域名检测精度不高和检测范围较小的问题,本文提出一种迁移自反馈学习的小样本恶意域名检测算法.首先,该算法融合卷积神经网络(Convolutional Neural Networks, CNN)和双向长短时记忆神经网络(Bi-directional Long Short Term Memory, BiLSTM)的串行混合模型(CNN-BiLSTM),在提取域名字符特征的基础上保留上下文语义信息;然后,将学习到的网络模型参数迁移至小样本的恶意域名检测模型中;最后,利用提取的多维人工特征验证小样本恶意域名检测模型的检测结果,并将其检测结果反馈至迁移模型中,重新优化网络模型.通过在多家族域名数据集和小样数据集上进行测试验证,算法结果表明,本文模型在保持检测精度的基础上,能够识别出更多种新出现或新变种的小样本恶意域名. 相似文献
9.
首先介绍了安全传输层(TLS,transport layer security)协议的特点、流量识别方法;然后给出了一种基于机器学习的分布式自动化的恶意加密流量检测体系;进而从 TLS 特征、数据元特征、上下文数据特征3个方面分析了恶意加密流量的特征;最后,通过实验对几种常见机器学习算法的性能进行对比,实现了对恶意加密流量的高效检测。 相似文献
10.
高级持续威胁APT攻击为了躲避检测,攻击者往往采用加密恶意流量和隐蔽隧道等策略隐匿恶意行为,从而增加检测的难度。目前大多数检测DNS隐蔽隧道的方法基于统计、频率、数据包等特征,这种方法不能很好地进行实时检测,从而导致数据泄露,因此,需要根据单个DNS请求进行检测而不是对流量进行统计后再检测,才能够实现实时且可靠的检测,当系统判定单个DNS请求为隧道流量,便可做出响应,进而避免数据泄露。而现有的加密恶意检测方法存在无法完整提取流量特征信息、提取特征手段单一、特征利用少等问题。因此,文章提出了基于多模型融合的隐蔽隧道加密恶意流量检测方法。对于DNS隐蔽隧道,文章提出了MLP、1D-CNN、RNN模型融合的检测方法并根据提出的数学模型计算融合结果,该方法能够对隐蔽隧道实时监测,进一步提高检测的整体准确率。对于加密恶意流量,文章提出了1D-CNN、LSTM模型的并行融合的检测方法,并行融合模型能够更加全面地提取特征信息,反应流量数据的全貌,进而提高模型的检测精度。 相似文献
11.
随着5G时代的来临,以及公众对互联网的认识日益加深,公众对个人隐私的保护也越来越重视。由于数据加密过程中存在着恶意通信,为确保数据安全,维护社会国家利益,加密流量识别的研究工作尤为重要。针对TLS流量详细的阐述,分析了早期识别方法的改进技术,包括常见的流量检测技术、DPI检测技术、代理技术以及证书检测技术。介绍了选取不同TLS加密流量特征的机器学习模型,以及无需特征选择的深度学习模型等诸多最新研究成果。对相关研究工作的不足进行总结,并对未来技术的研究工作和发展趋势进行了展望。 相似文献
12.
随着科技的发展,个人电脑和手机成为现代社会中所不可缺少的智能设备。个人电脑和手机中丰富的应用程序通过互联网给用户提供诸如实时聊天、邮件、下载等便捷的网络服务。但是,这些设备的普及也吸引了大量的恶意攻击者,恶意应用程序和恶意流量随之产生。针对这一问题,在恶意流量分类检测的基础上,基于孪生神经网络提出一种端到端的单样本检测方法。对样本数据进行预处理转化为灰度图像,在TensorFlow深度学习框架下对图像样本进行训练学习,通过对比灰度图像间的相似程度实现了恶意流量的检测。提出的方法不仅能够实现端到端的单样本检测,而且在样本不均衡的分类问题上也给出了一种解决方案。最终的实验检测准确率可达95.04%,证明了该方法的可行性和科学性。 相似文献
13.
随着互联网的高速发展和办公自动化的日益普及,PDF(portable document format)文件已经成为全球电子文档分发的开放式标准,由于PDF文档的高实用性和普遍适应性,使其成为有针对性钓鱼攻击的有效载体。恶意代码对计算机的严重破坏性,检测和防止含有恶意代码的PDF文档已日益成为计算机安全领域的重要目标。通过从文档中提取特征数据,提出了一个基于机器学习算法的恶意PDF检测框架,最后并通过实验验证了其检测模型的有效性。 相似文献
14.
15.
随着工业4.0时代的日益推进,智能电网成为目前的热点话题,各种物联网设备的嵌入以及边缘节点的部署是变电站二次系统云边协同的重要基础。该文通过对电网系统中联网设备网络行为所产生的HTTP流量进行研究,分析网络流量属性与恶意行为的相关关系,挖掘出数据特征,进而使用不同的机器学习算法来检测恶意行为,并对其进行追踪定位。实验结果表明,提出的检测方法能够有效识别恶意联网设备,降低电网系统的安全风险系数,从而保证系统安全。 相似文献
16.
针对使用传统机器学习方法来识别恶意TLS流量受到专家经验的影响较大、识别与分类效果不理想的问题,提出了HNNIM(Hybrid Neural Network Identification Model)模型来进行识别与分类.模型由两层组成:第一层用于提取特征,第二层用于识别与分类.第一层中,提取的特征分为两部分,一部分特... 相似文献
17.
针对网络入侵检测系统(NIDS)能够检测当前系统中存在的网络安全事件,但由于自身的高误报率和识别安全事件产生的时延,无法提前对网络安全事件进行准确率较高的预警功能,严重制约了NIDS的实际应用和未来发展的问题,提出了基于深度学习的网络流量异常预测方法。该方法提出了一种结合深度学习算法中长短期记忆网络和卷积神经网络的预测模型,能够训练得到网络流量数据的时空特征,实现预测下一时段网络流量特征变化和网络安全事件分类识别,为NIDS实现网络安全事件的预警功能提供了方法分析。实验通过使用设计好的神经网络框架对入侵检测系统流量数据集CICIDS2017进行了训练和性能测试,在该方法下流量分类的误报率下降到0.26%,总体准确率达到了99.57%,流量特征预测模型R2的最佳效果达到了0.762。 相似文献
18.
恶意事务检测是数据库入侵检测技术研究中的一个重要课题,而及时的恶意事务检测是构建可生存性DBMS的基础.在已有的恶意事务检测方法的基础上,通过扩展对SQL操作语句的解析粒度,给出了蕴含条件子句逻辑结构的细粒度SQL操作语句特征向量表示方法,并在此基础上给出包含事务语句有向图和事务执行环境约束集合的事务模板表示方法,最后,在给出事务模板支持判定算法的基础上,提出了一种基于事务模板的恶意事务检测算法.为了验证提出方法的有效性,针对事务执行性能、检测类型以及检测率进行实验,结果表明该恶意事务检测方法不仅具有较好的性能,同时具有更强的检测能力和更广的适用范围. 相似文献
19.
为实现网络流量的有效管控,提出一种基于安全套接层(SSL)协议交互字段与多输入最大化单输出隐马尔可夫模型(HMM)的加密应用并行识别方法.将来自客户端或者服务器的单向数据流SSL协议交互阶段的字段作为HMM模型的观测序列,并对所有待识别的加密应用建立HMM模型形成指纹库.在此基础上,利用前向算法计算未知观测序列被识别为... 相似文献