首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
随着网络安全防范意识增强,加密通信占据主流,加密流量快速增长。流量加密在保护隐私的同时,也掩饰非法企图,改变威胁形式。深度学习作为机器学习领域的重要分支,是流量分类的有力工具。近年来,将深度学习方法应用于入侵检测的研究不断深入,取得良好效果。在深入调研文献的基础上,将加密恶意流量检测的步骤总结归纳为“六步法”的一般检测框架模型,结合模型对数据处理及检测算法进行回顾总结,指出各类算法模型的优缺点,并对未来研究方向进行展望,以期为下一步研究提供帮助。  相似文献   

2.
恶意加密流量的识别是网络安全管理的一项重要内容。然而,随着网络用户的增加,网络流量的数量和种类正以指数级增加,这给网络安全管理带来了新的挑战和威胁。传统的恶意加密流量识别方法依赖专家经验,且对恶意加密流量特征区分能力不强,不适用目前复杂网络的场景。本文提出了基于多头注意力的恶意加密流量检测方法,通过多头注意力,流量特征可以被映射到多个子空间并进行高阶流量特征的提取,通过一维卷积神经网络进一步提取数据包内部的空间特征。实验结果表明,该方法在CTU数据集上对正常、恶意加密流量的二分类取得了优异的检测效果。  相似文献   

3.
网络流量加密在保护企业数据和用户隐私的同时, 也为恶意流量检测带来新的挑战. 根据处理加密流量的方式不同, 加密恶意流量检测可分为主动检测和被动检测. 主动检测包括对流量解密后的检测和基于可搜索加密技术的检测, 其研究重点是隐私安全的保障和检测效率的提升, 主要分析可信执行环境和可控传输协议等保障措施的应用. 被动检测是在用户无感知且不执行任何加密或解密操作的前提下, 识别加密恶意流量的检测方法, 其研究重点是特征的选择与构建, 主要从侧信道特征、明文特征和原始流量等3类特征分析相关检测方法, 给出有关模型的实验评估结论. 最后, 从混淆流量特征、干扰学习算法和隐藏相关信息等角度, 分析加密恶意流量检测对抗研究的可实施性.  相似文献   

4.
5.
随着加密流量的广泛使用,越来越多恶意软件也利用加密流量来传输恶意信息,由于其传输内容不可见,传统的基于深度包分析的检测方法带来精度下降和实时性不足等问题.本文通过分析恶意加密流量和正常流量的会话和协议,提出了一种结合多特征的恶意加密流量检测方法,该方法提取了加密流量会话的包长与时间马尔科夫链、包长与时间分布及包长与时间...  相似文献   

6.
邹福泰  俞汤达  许文亮 《软件学报》2022,33(7):2683-2698
近年来,随着网络加密技术的普及,使用网络加密技术的恶意攻击事件也在逐年增长,依赖于数据包内容的传统检测方法如今已经无法有效地应对隐藏在加密流量中的恶意软件攻击.为了能够应对不同协议下的加密恶意流量检测,提出了基于ProfileHMM的加密恶意流量检测算法.该方法利用生物信息学上的基因序列比对分析,通过匹配关键基因子序列,实现识别加密攻击流量的能力.通过使用开源数据集在不同条件下进行实验,结果表明了算法的有效性.此外,设计了两种规避检测的方法,通过实验验证了算法具有较好的抗规避检测的能力.与已有研究相比,该工作具有应用场景广泛以及检测准确率较高的特点,为基于加密流量的恶意软件检测研究领域提供了一种较为有效的解决方案.  相似文献   

7.
域名生成算法(DGA)存在变化多、部分类别样本难获取的特点,使得采用传统机器学习的恶意域名检测模型准确性不高.提出一种基于迁移学习和多核CNN的小样本DGA恶意域名检测模型.该模型将目标域名映射到向量空间中,使用样本充足的DGA种类进行预训练,并迁移预训练得到的参数到小样本检测模型.采用多核CNN小样本分类模型根据发音...  相似文献   

8.
针对现有恶意域名检测算法对于新出现或新变种等小样本恶意域名检测精度不高和检测范围较小的问题,本文提出一种迁移自反馈学习的小样本恶意域名检测算法.首先,该算法融合卷积神经网络(Convolutional Neural Networks, CNN)和双向长短时记忆神经网络(Bi-directional Long Short Term Memory, BiLSTM)的串行混合模型(CNN-BiLSTM),在提取域名字符特征的基础上保留上下文语义信息;然后,将学习到的网络模型参数迁移至小样本的恶意域名检测模型中;最后,利用提取的多维人工特征验证小样本恶意域名检测模型的检测结果,并将其检测结果反馈至迁移模型中,重新优化网络模型.通过在多家族域名数据集和小样数据集上进行测试验证,算法结果表明,本文模型在保持检测精度的基础上,能够识别出更多种新出现或新变种的小样本恶意域名.  相似文献   

9.
首先介绍了安全传输层(TLS,transport layer security)协议的特点、流量识别方法;然后给出了一种基于机器学习的分布式自动化的恶意加密流量检测体系;进而从 TLS 特征、数据元特征、上下文数据特征3个方面分析了恶意加密流量的特征;最后,通过实验对几种常见机器学习算法的性能进行对比,实现了对恶意加密流量的高效检测。  相似文献   

10.
孙懿  高见  顾益军 《计算机工程》2023,49(1):154-162
在互联网加密化背景下,传统恶意流量检测方法在加密流量上的特征区分度较差,为更好地从加密流量中检测出恶意流量,设计一个融合一维Inception-ViT的恶意加密流量检测模型。基于流量数据的时序性特点,通过一维Inception结构对GoogLeNet中的Inception结构进行改进,使用适用于序列数据的一维卷积替换二维卷积,并添加池化操作去除一些冗余信息的干扰。同时,融合ViT模型,将经过一维Inception结构处理后的数据输入到ViT模型中,利用多头注意力突出重要特征,增强特征区分度以提升模型检测结果。为验证一维Inception-ViT模型各模块的有效性,与6种变体模型进行对比,实验结果表明,一维Inception-ViT模型性能最好,平均召回率和平均F1值指标分别达到了99.42%和99.39%。此外,与其他8种现有模型进行比较,一维Inception-ViT模型具有更好的检测效果,同时在恶意加密流量Neris和Virut细粒度分类上,与性能最好的基准模型相比,一维Inception-ViT模型能够有效减少样本检测混淆,可更准确地对恶意加密流量进行识别。  相似文献   

11.
随着加密技术的全面应用, 越来越多的恶意软件同样采用加密的方式隐藏自身的网络活动, 导致基于规则和特征的传统方法无法满足准确性和普适性的要求. 针对上述问题, 提出一种层次特征融合和注意力的恶意加密流量识别方法. 算法具备层次结构, 依次提取数据包的特征和会话流的特征, 前一阶段设计全局混合池化方法进行特征融合; 后一阶段使用注意力机制提高BiLSTM网络分析序列关系的能力. 最终, 实验采用CIC-AndMal 2017数据集进行验证, 结果表明: 模型设计合理, 相比TextCNN模型和HST-MHSA模型, 漏报率分别降低5.8%和2.6%, 加权F1值分别提高4.7%和3.5%, 在恶意加密流量识别和分类方面体现良好的优化效果.  相似文献   

12.
随着5G时代的来临,以及公众对互联网的认识日益加深,公众对个人隐私的保护也越来越重视。由于数据加密过程中存在着恶意通信,为确保数据安全,维护社会国家利益,加密流量识别的研究工作尤为重要。针对TLS流量详细的阐述,分析了早期识别方法的改进技术,包括常见的流量检测技术、DPI检测技术、代理技术以及证书检测技术。介绍了选取不同TLS加密流量特征的机器学习模型,以及无需特征选择的深度学习模型等诸多最新研究成果。对相关研究工作的不足进行总结,并对未来技术的研究工作和发展趋势进行了展望。  相似文献   

13.
基于传统循环神经网络的加密流量分类方法普遍存在并行性较差、模型运行效率较低等问题。为实现加密流量的快速准确分类,提出一种基于多层双向简单循环单元(SRU)与注意力(MLBSRU-A)模型的加密流量分类方法。将特征学习和分类统一到一个端到端模型中,利用SRU模型高度并行化的序列建模能力来提高整体运行效率。为了提升MLBSRU-A模型的分类精度,堆叠多层双向SRU网络使其自动地从原始流量中提取特征,并引入注意力机制为特征赋予不同的权重,从而提高重要特征之间的区分度。实验结果表明,在公开数据集ISCX VPN-nonVPN上,MLBSRU-A模型具有较高的分类精度和运行效率,与BGRUA模型相比,MLBSRU-A的细粒度分类准确率提高4.34%,训练时间减少55.38%,在USTC-TFC 2016数据集上,MLBSRU-A模型对未知加密恶意流量的检测准确率达到99.50%,细粒度分类准确率为98.84%,其兼具对未知加密恶意流量的高精度检测能力以及对加密恶意流量的细粒度分类能力。  相似文献   

14.
近年来,为保护公众隐私,互联网上的很多流量被加密传输,传统的基于深度包检测、机器学习的方法在面对加密流量时,准确率大幅下降.随着深度学习自动学习特征的应用,基于深度学习算法的加密流量识别和分类技术得到了快速发展,本文对这些研究进行综述.首先,简要介绍基于深度学习的加密流量检测应用场景.然后,从数据集的使用和构建、检测模...  相似文献   

15.
恶意加密流量识别公开数据集中存在的类不平衡问题,严重影响着恶意流量预测的性能。本文提出使用深度生成对抗网络DGAN中的生成器和鉴别器,模拟真实数据集生成并扩展小样本数据,形成平衡数据集。此外,针对传统机器学习方法依赖人工特征提取导致分类准确度下降等问题,提出一种基于双向门控循环单元BiGRU与注意力机制相融合的恶意流量识别模型,由深度学习算法自动获取数据集不同时序的重要特征向量,进行恶意流量得识别。实验表明,与常用恶意流量识别算法相比,该模型在精度、召回率、F1等指标上都有较好的提升,能有效实现恶意加密流量的识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号