共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
基于机器视觉的药品包装生产线自动检测系统 总被引:1,自引:5,他引:1
目的提高包装药品效率,保证包装过程的正确率和安全性。方法在充分研究药品包装生产线现状的基础上,将机器视觉应用于药品包装生产线药品的自动检测,采用基于最大熵阈值,设计一种图像分割方法;同时采用自适应高斯引导图像滤波算法,设计一种图像去噪算法。结果通过实验验证,该系统可以实现药品包装生产线的自动检测,并能自动剔除不合格药品,保证生产安全。结论研究的药品包装生产线自动检测系统具有自动化程度高、效率高的优点,具有广阔的市场应用前景。 相似文献
4.
目的 解决现有工业线束导线排序检测方法中存在的效率低、混色导线检测效果差等问题。方法 基于机器视觉技术设计一种线束导线排序检测装置,并结合图像处理技术和深度学习原理提出一种混色导线排序检测方法。首先根据线束图像中选择的感兴趣区域,分割出线束连接器图像和导线图像,并采用模板匹配和颜色定位方法完成连接器正反面的识别和单色导线的识别定位;然后采集并制作PE混色导线数据集,研究Faster R−CNN、SSD、YOLOv3和YOLOv5m等4种不同目标检测算法对PE混色导线的检测效果。结果 实验结果表明,YOLOv5m检测模型的检测速度和准确率兼顾性最好;改进系统后,检测时间减少了18.55%,平均识别准确率为98.83%。结论 改进后检测系统具有良好的检测效率和可靠性,适用于种类丰富的工业线束导线排序检测。 相似文献
5.
In network-based intrusion detection practices, there are more regular instances than intrusion instances. Because there is always a statistical imbalance in the instances, it is difficult to train the intrusion detection system effectively. In this work, we compare intrusion detection performance by increasing the rarely appearing instances rather than by eliminating the frequently appearing duplicate instances. Our technique mitigates the statistical imbalance in these instances. We also carried out an experiment on the training model by increasing the instances, thereby increasing the attack instances step by step up to 13 levels. The experiments included not only known attacks, but also unknown new intrusions. The results are compared with the existing studies from the literature, and show an improvement in accuracy, sensitivity, and specificity over previous studies. The detection rates for the remote-to-user (R2L) and user-to-root (U2L) categories are improved significantly by adding fewer instances. The detection of many intrusions is increased from a very low to a very high detection rate. The detection of newer attacks that had not been used in training improved from 9% to 12%. This study has practical applications in network administration to protect from known and unknown attacks. If network administrators are running out of instances for some attacks, they can increase the number of instances with rarely appearing instances, thereby improving the detection of both known and unknown new attacks. 相似文献
6.
Erssa Arif Syed Khuram Shahzad Muhammad Waseem Iqbal Muhammad Arfan Jaffar Abdullah S. Alshahrani Ahmed Alghamdi 《计算机、材料和连续体(英文)》2022,72(3):4615-4630
The conventional Close circuit television (CCTV) cameras-based surveillance and control systems require human resource supervision. Almost all the criminal activities take place using weapons mostly a handheld gun, revolver, pistol, swords etc. Therefore, automatic weapons detection is a vital requirement now a day. The current research is concerned about the real-time detection of weapons for the surveillance cameras with an implementation of weapon detection using Efficient–Net. Real time datasets, from local surveillance department's test sessions are used for model training and testing. Datasets consist of local environment images and videos from different type and resolution cameras that minimize the idealism. This research also contributes in the making of Efficient-Net that is experimented and results in a positive dimension. The results are also been represented in graphs and in calculations for the representation of results during training and results after training are also shown to represent our research contribution. Efficient-Net algorithm gives better results than existing algorithms. By using Efficient-Net algorithms the accuracy achieved 98.12% when epochs increase as compared to other algorithms. 相似文献
7.
目的 针对当前国内瓶盖划痕检测算法在较复杂背景条件下,存在精度不高、瓶盖划痕图像灰度值变化剧烈,且影响因素较多,无法准确定位检测的问题,提出一种基于机器视觉技术的瓶盖划痕检测方案,以实现在对比度较低的背景下对细微划痕快速准确的检测。方法 对标准图像作预处理创建模板,对样本图像进行滤波降噪、基于形状的模板匹配、提取感兴趣区域(ROI)、高斯差分滤波增强划痕拉开对比度、二维Otsu阈值分割、形态学处理、特征提取划痕。通过获取300幅瓶盖表面图像,与差影法、大津法、人工检测法进行了划痕检测对比实验。结果 实验结果表明,提出的算法能快速、准确、高效地提取瓶盖划痕,检测1幅图片的平均时间为113 ms,检测准确率为98.3%。结论 该方案与人工检测、差影法、大津法相比,检测精度更高、速度更快、鲁棒性更好,可以满足工业上的生产需求。 相似文献
8.
Vision-based player recognition is critical in sports applications. Accuracy, efficiency, and Low memory utilization is alluring for ongoing errands, for example, astute communicates and occasion classification. We developed an algorithm that tracks the movements of different players from a video of a basketball game. With their position tracked, we then proceed to map the position of these players onto an image of a basketball court. The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations, so that they can better design mechanisms of defence and attack. Overall, our model has a high degree of identification and tracking of the players in the court. We directed investigations on soccer, basketball, ice hockey and pedestrian datasets. The trial comes about an exhibit that our technique can precisely recognize players under testing conditions. Contrasted and CNNs that are adjusted from general question identification systems, for example, Faster-RCNN, our approach accomplishes cutting edge exactness on three sorts of recreations (basketball, soccer and ice hockey) with 1000×fewer parameters. The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods. 相似文献
9.
目的 封装检测是保证流水线上产品质量的关键。针对预罐装注射液,提出一种基于机器视觉的注射液针头胶帽缺陷的实用检测算法。方法 算法首先采用以灰度分布概率作为度量标准的直方图双峰法,对图像进行阈值分割;随后依据以特征角点为中心延伸出的4个象限区域进行特征分析,定位胶帽下边沿左、右角点,以计算胶帽高度;将对称轴点集进行分段直线拟合,得到对称轴所有可能的斜率和截距,基于边缘信息计算最优对称轴和胶帽倾斜角。结果 采用多组图像检验算法缺陷检测,实验结果显示检测成功率达到97.86%。结论 该算法能够对针头胶帽的多种缺陷进行检测,对不合格产品进行分类。 相似文献
10.
目的某炮弹药筒退弹槽底宽检测速度和精度要求比较高,传统的手工测量适应不了自动化生产的需要。方法用DH-SV1410型CCD摄像机及可调LED光源构建图像采集系统,并在VS2010平台上用C#语言编写一套基于机器视觉的测量系统。采用亚像素边缘轮廓提取方法精确定位退弹槽的边缘轮廓,并设计一个针对退弹槽底宽检测算法。结果通过对一个零件相同部位进行重复对比实验和多个零件测量对比试验表明,该系统在微米级上有误差,但最大误差最大不超过2μm。结论该系统的检测精度能够达到10μm,完全能满足某炮弹药筒在线测量的速度和精度要求,且测量结果不受主观因素的影响。 相似文献
11.
为实现图案布匹瑕疵的在线实时检测,提出了一种基于机器视觉的实时检测方法。离线训练时,通过无瑕疵图像的叠加距离函数以及极值权重分析精确求取图案纹理基元周期,提取标准基元后创建无瑕疵标准基元偏移序列,提取特征用以构建模糊分类器;在线检测时,基于创建的偏移序列求取待检测图像块特征,采用模糊分类器分类,若存在瑕疵则继续构建精确分类器分类。实验表明,所提出的方法对任一批图案不同布匹只需对无瑕疵图案布匹学习一次,即可实现在线检测,检测一帧图像平均时间为200 ms,准确率达99%以上,实时性高且误检率低。 相似文献
12.
13.
目的 针对芯片包装载带在生产过程中经常出现的型腔底部和边缘变形、穿孔等缺陷的检测问题,提出一种机器视觉检测方法。方法 首先离线准备配准模板及标准模板图像,然后根据模板在生产过程中进行在线检测。在检测过程中由传感器触发采集待检测型腔图像,然后通过模板匹配方法配准模板图像和待检测图像,并进行异或运算检测两图像差异从而定位缺陷。结果 实验证明边缘变形检测最大错误率为0.45%,底部变形检测最大错误率为0.50%,穿孔检测最大错误率为0.35%,每帧图像检测平均耗时为0.22 s,满足用户错误率不超过1%和每帧耗时不超过0.5 s的要求。结论 该方法能够实时检测芯片载带边缘变形、穿孔等缺陷,有效地实现载带加工生产过程中的质量监控。 相似文献
14.
目的为提高玻璃瓶口缺陷检测精度,确保生产线包装效率。方法基于机器视觉设计一种瓶口缺陷检测方法,并简要介绍检测系统的整体框架。分别论述基于最大熵值法的图像分割方法、瓶口定位方法以及图像特征提取方法,其中图像特征主要包括周长、圆形度、相对圆心距离。利用BP神经网络实现瓶口缺陷的准确识别,将瓶口破损程度转换为具体数值,最后进行实验验证。结果文中检测方法对破损瓶口的检测成功率为99%,对于不同的破损类型均有较高的检测准确度。结论基于机器视觉的玻璃瓶口缺陷检测方法能够满足生产线对准确性和实时性的要求。 相似文献
15.
16.
目的针对EAN-13商品条码,运用机器视觉技术进行商品条码质量检测,实现一体化、自动化、智能化检验。方法根据检测要求,设计商品条码图像采集装置,通过系统标定完成初始化。条码检测时,采集待测条码图像,进行畸变矫正;通过边缘检测、形态处理和轮廓匹配,找到条码准确位置,分割出条码图像区域,对其旋转校正,分为条码区域和数字区域;对条码区域,水平采样获取反射曲线,计算光学特性参数和译码数据,通过几何特征分析,结合标定参数,计算出相关结构参数;对数字区域,通过字符分割、模版匹配,完成字符识别;最后,通过比对分析,获取全部检测数据。结果分别采用该方法和传统方法,对100个EAN-13条码样本进行了检测对比,试验表明该方法的检验结果符合国家标准,检测数据准确可靠;该方法操作快捷,精度更高,检测速度大幅提高。结论文中方法实现了商品条码质量检测的一体化、自动化、智能化处理,显著提高了检验水平和工作效率。 相似文献
17.
18.
红外弱小目标检测跟踪并行处理系统 总被引:2,自引:0,他引:2
针对红外弱小目标的实时检测与跟踪,本文设计了一套基于4×ADSP TS201S-600处理器的多DSP并行处理系统.该系统拥有LVDS数字视频输入输出接口,利用TS201S的链路口构建了松耦合并行处理系统,支持多DSP间的两两交叉互联和板级互联,定点运算的峰值速度可达19.2 GMAC@16 bit/s,浮点运算的峰值速度可达14.4 GFLOPS.实验结果表明,该并行处理系统具有高实时性、良好的适用性和扩展性等特点,可以实现对大画面,高帧频的红外弱小目标实时检测跟踪. 相似文献
19.