首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
相变微胶囊悬浮液是将相变微胶囊分散到基液中形成的功能热流体,能实现储热及热输运一体化,大大提高了基液的储、载热密度,但由于相变微胶囊的热导率较低,影响了悬浮液的传热性能。为了提高相变微胶囊的导热性能,本文制备了掺杂石墨烯的复合相变微胶囊,并将其分散在水中形成相变微胶囊悬浮液。搭建了实验台,对比研究了水、相变微胶囊悬浮液、石墨烯复合相变微胶囊悬浮液的管内对流换热特性。结果表明,相变微胶囊悬浮液对流换热系数随着浓度的增加而降低,随着温度的升高而增加,并且当流速大于1.5m/s时,质量分数15%的石墨烯复合相变微胶囊悬浮液的对流换热系数大于水,表现出良好的传热特性。研究结果可为相变微胶囊悬浮液热输运系统的设计提供参考与依据。  相似文献   

2.
吴兴辉  杨震  陈颖  段远源 《化工学报》2020,71(4):1491-1501
相变材料微胶囊悬浮液是将相变微胶囊颗粒添加至单相流体中形成的一种新型传热介质,由于传热系数高、传热储能一体化等优势,具备很大的发展潜力。采用离散相两相流模型,对恒热流水平圆管中相变微胶囊流体的传热特性进行了模拟计算,通过对比实验数据验证了模型的可靠性,进而定量分析了颗粒尺寸、质量分数、相变潜热,特别是颗粒分布对传热的影响。结果表明随着微胶囊颗粒质量分数增加,颗粒粒径减小,相变潜热增大,壁面传热效果越好,且相变潜热大小对壁温控制和壁面传热的影响大于颗粒质量分数和颗粒尺寸的影响。比较了离散相模型与常用的单相流模型的计算结果,发现质量分数越高,颗粒集聚程度越高,单相流模型计算的偏差越大。  相似文献   

3.
基于离散相模型,采用颗粒比热容随温度变化分段函数描述颗粒的相变过程,模拟了相变微胶囊悬浮液在细小槽道换热器内的对流传热特性,考察了不同入口流量时换热器进出口压差及温差的变化规律,并与纯水进行比较,分析了换热器内部及加热面温度分布,研究了换热器典型通道修正的局部努赛尔数Nux*沿流动方向的变化规律. 结果表明,相变微胶囊悬浮液在换热器内的压损随流量变化规律与纯水一致,较纯水有所增大;引入相变微胶囊颗粒减缓了加热面和流体温度升高的速率,使换热器出口及加热面的温度比纯水低;受进出口位置影响,换热器内温度呈现中间通道低、向两侧逐渐升高的分布规律. 不同通道的Nux*沿流动方向的变化规律存在一定差异,部分通道内相变材料完全融化,而部分通道内相变材料尚未完全融化就流出换热器. 需改进换热器进出口位置或对换热器内部结构进行优化设计以获得较好的流量分配特性,从而改善换热效果.  相似文献   

4.
微小管道内相变微胶囊悬浮液换热特性   总被引:2,自引:1,他引:1       下载免费PDF全文
钟小龙  刘东  胥海伦 《化工学报》2016,67(Z1):203-209
通过实验研究了去离子水和10%浓度相变微胶囊悬浮液在1 mm、2 mm管道内换热特性,结果表明:在Reynolds数Re=400~1000,1 mm管道内去离子水和10%浓度相变微胶囊悬浮液局部Nusselt数Nux均比2 mm 管道的小,分析其原因,这主要是由于1 mm管道壁厚管径比大导致的轴向导热比2 mm管道强引起的;1 mm管道内去离子水中加入相变微胶囊颗粒能够增强与管壁之间对流换热,且随着Re的增加,Nux增大,而2 mm管道内去离子水中加入相变微胶囊颗粒,构成10%浓度相变微胶囊悬浮液,表现出比水更差的换热特性,并且随着Re的增加Nux降低。  相似文献   

5.
基于计算流体动力学?离散相模型模拟研究恒热流密度条件下3D圆形管道内相变微胶囊悬浮液(Micro-PCMS)紊流的对流传热特性,讨论了微胶囊质量分数对管道内悬浮液速度、温度及壁面温度的影响,获得了沿流动方向不同截面的速度分布、温度分布及修正的局部Nu数.结果表明,靠近管道壁面处,相变微胶囊的存在使悬浮液速度降低,且随其含量增加而降低愈加明显;管内悬浮液温度分布分为非融化区、融化区和完全融化区;管道壁面温度、悬浮液出口温度均比纯水降低,相变微胶囊含量为12%,16%,20%(?)时,出口处悬浮液温度分别降低25.5%,33.9%,42.4%,壁面温度分别降低23.9%,31.0%,39.2%.且因存在相变吸热及扰动的共同效应,管道内温度分布从规则的抛物线形逐渐演变为具有尖峰的曲线.  相似文献   

6.
矩形微通道内相变微胶囊悬浮液换热特性   总被引:1,自引:0,他引:1  
与常规传热流体相比,相变微胶囊悬浮液因具有较大的表观比热和较高的热能存储容量而具有良好的应用前景。基于此背景,通过实验研究了蒸馏水、1.0%和2.5%浓度的相变微胶囊悬浮液在长100mm,宽度和深度都为0.5mm的矩形微通道中的换热特性。相变微胶囊悬浮液因具有较大的相变潜热、颗粒的扰动和颗粒周围的微对流而表现出比蒸馏水更好的换热性能。相比于蒸馏水,相变微胶囊悬浮液对应的平均Nu更大一些,且当Re增大时,Nu也随之增大;在Re不变的情况下,相变微胶囊悬浮液使通道平均壁面温度比蒸馏水的更低;随着相变微胶囊悬浮液浓度的增加,换热性能增强。  相似文献   

7.
微通道内的液-液两相流型在低流速时以泰勒流为主,本文使用计算流体力学方法,对微通道内液-液泰勒流的传热特性进行了研究。首先考察了分散相流速、物系和管径对微通道壁面温度的影响。结果表明:分散相流速和物系热导率增大使得微通道壁面温度降低,管径的改变对微通道壁面温度影响较小。然后针对当量直径为0.5mm的微通道内工作介质为甲苯和水的两相泰勒流模型,考察了微通道壁面剪切力、界面涡度和努塞尔数对壁面和内部温度的影响,并与文献中气-液两相泰勒流的传热性质作了比较。结果表明:壁面剪切力和界面涡度对管壁和界面温度的波动性变化有一定影响,壁面剪切力和界面涡度的波峰往往出现在温度的波峰附近,并且有一定的时间滞后性。甲苯-水两相泰勒流动下的壁面努塞尔数比气-液两相流大得多,液弹单元的平均努塞尔数是相同条件下单相流体流动的1.3倍。  相似文献   

8.
基于CFD-DPM模型研究定热流壁面条件下二维微槽道内相变微胶囊悬浮液的层流对流换热特性,并结合DSC测试结果采用等效比热模型对相变微胶囊相变特性进行表征,和水的特点进行对比,讨论了相变微胶囊质量分数、有无壁面热阻等因素的影响。结果发现:相变微胶囊悬浮液冷却特性明显优于单质水,并且随着质量分数的增加,模拟相变融化区长度不断增加,最大强化率可达15.7%;从模拟结果中可以明显看出:由于存在微胶囊的相变吸热,流体温度明显低于单质水,平均流体温度明显降低。当存在相变微胶囊颗粒壁面热阻时,换热强度明显小于无壁材情况,对比有无壁面热阻情况下,结果可以发现当存在壁面热阻时,其融化起始点要晚一点,但是对相变吸热的效果影响不大。  相似文献   

9.
细小尺度下潜热型功能热流体压降与传热特性   总被引:2,自引:1,他引:1  
鲁进利  郝英立 《化工学报》2010,61(6):1385-1392
实验研究了相变微胶囊颗粒(囊芯材料为正十六烷,壳材为尿素-甲醛树脂)和去离子水混合制成的潜热型功能热流体流过等热流细小圆管的流动与传热特性,同时以去离子水作为传热工质在相同条件下进行了对比实验。得到了压降随质量流量的变化规律,实验段出、入口温度以及量纲1出口温度随Reynolds数变化规律,量纲1壁面温度沿轴向的分布规律,平均Nusselt数随Reynolds数的变化关系。结果表明,相变微胶囊颗粒的加入会导致流动压降增大,但随着流量增加,流动压降逐渐与单相液体的接近;出口温度及壁面温度要比相同条件下单相液体的低;含有较小相变微胶囊颗粒浓度的潜热型功能热流体的平均Nusselt数是相同条件下单相液体的2.0~4.0倍。  相似文献   

10.
董彬  薛永浩  梁坤峰  袁争印  王林  周训 《化工学报》2022,73(7):2971-2981
根据相变微胶囊储存和释放潜热的特殊性质,分别使用相变微胶囊悬浮液(MPCMS)和纯水作为喷淋介质,搭建了一个小型喷淋塔装置,其中相变微胶囊的芯材为正二十二烷(C22H46)。实验设定了五个喷淋温度(35、40、44、47、51℃)、三个空气流量(0.011、0.018、0.025 m3/s)和两种直径(SMD=80、240 μm)的大、小液滴作为实验变量,探究了上述两种介质与空气之间的换热特性。实验结果表明:相变微胶囊的过冷会影响换热过程。常温常湿条件下,对于小液滴,当空气流量为0.018、0.025 m3/s时,喷淋温度为44、47℃的MPCMS比相同温度下的纯水更能促进换热;当空气流量为0.011 m3/s时,喷淋温度为44℃的MPCMS比相同温度下的纯水更能促进换热。对于大液滴,在三种空气流量下,喷淋温度为44℃的MPCMS比相同温度下的纯水作为喷淋介质时换热效果更好。  相似文献   

11.
针对传统使用水基和油基的太阳能集热器换热效果低和管壁热应力大的问题,以相变微胶囊悬浮液为工作流体,对抛物型槽式太阳能集热器进行了三维建模。采用蒙特卡罗射线追踪法结合有限容积法和有限元法的方法求解了太阳能集热管的光?热?力耦合问题,采用欧拉?欧拉多相流模型研究了相变微胶囊悬浮液在集热管内的流动换热特性。结果表明,相变微胶囊悬浮液强化了集热管内的对流换热,不仅降低了集热管的沿程壁温,且减少了集热管的周向温差,均化了集热管温度分布。集热管周向等效热应力呈花瓣型分布,对应的5个高温度梯度的位置附近(圆周角θ=5°, 90°, 175°, 225°和315°)出现等效应力局部峰值。吸热管内壁面θ=90°处轴向热应力为压应力,作用于整个管程,而径向热应力和切向热应力为拉应力,主要作用在进出口端。相变微胶囊悬浮液浓度越高,强化换热效果越好,集热管热应力越小,但产生的压降也随之增大。  相似文献   

12.
董彬  薛永浩  梁坤峰  袁争印  王林  周训 《化工学报》1951,73(7):2971-2981
根据相变微胶囊储存和释放潜热的特殊性质,分别使用相变微胶囊悬浮液(MPCMS)和纯水作为喷淋介质,搭建了一个小型喷淋塔装置,其中相变微胶囊的芯材为正二十二烷(C22H46)。实验设定了五个喷淋温度(35、40、44、47、51℃)、三个空气流量(0.011、0.018、0.025 m3/s)和两种直径(SMD=80、240 μm)的大、小液滴作为实验变量,探究了上述两种介质与空气之间的换热特性。实验结果表明:相变微胶囊的过冷会影响换热过程。常温常湿条件下,对于小液滴,当空气流量为0.018、0.025 m3/s时,喷淋温度为44、47℃的MPCMS比相同温度下的纯水更能促进换热;当空气流量为0.011 m3/s时,喷淋温度为44℃的MPCMS比相同温度下的纯水更能促进换热。对于大液滴,在三种空气流量下,喷淋温度为44℃的MPCMS比相同温度下的纯水作为喷淋介质时换热效果更好。  相似文献   

13.
Convective heat transfer characteristics of microencapsulated phase change material slurries (MPCSs) flowing in a circular tube under constant heat flux are studied and a feasible heat transfer model is presented. The heat transfer coefficient of MPCS and the wall temperature of the circular tube are simulated. The simulation results agree qualitatively with the experimental results. The effects of Stefan (Ste) number, mass concentration, phase change temperature range, and Reynolds (Re) number on heat transfer characteristics are discussed. The results indicate that the Ste‐number and mass fraction are the most important parameters influencing heat transfer properties compared to the phase change temperature range and Re‐number which less affect these characteristics.  相似文献   

14.
相变材料由于具有相变潜热,被应用于各领域的热管理。锂离子动力电池作为一种新能源,近年来广泛应用于电动汽车,相变冷却作为一种有效的被动冷却方式,能够有效减缓锂电池的热聚集。为将相变材料应用于减缓锂电池热失控,本工作建立了石蜡/纳米银复合相变材料(CPCM)的圆柱系统,使用相变模型及流体体积(VOF)模型研究了相变材料的融化过程,得到了初始时期空气/石蜡气液交界面的变化以及石蜡的液相分布,与实验结果具有很好的一致性。在此基础上分析了相变过程的吸热及储热情况。同时,针对不同质量分数的石蜡/纳米银复合相变材料进行模拟,结果表明,添加0.5wt%~2wt%的纳米银颗粒能够改善石蜡的导热性能,但潜热会有所降低。相变结束后,材料吸收的热量将转化为显热,底面传热减小,主要是通过壁面传热。另外分析了融化过程中液相的流动情况,相变材料液态层增厚,Nu数下降并趋于稳定,增加纳米银浓度也会降低Nu数。  相似文献   

15.
The two-equation porous medium model has been widely employed for modeling the flow-through monolithic catalytic converter. In this model, the interfacial heat and mass transfer coefficients have been usually obtained using the asymptotic Nusselt and Sherwood numbers with some suitable assumptions. However, previously it seemed that there existed some misunderstanding in adopting these Nusselt and Sherwood numbers. Up to now, the Nusselt number based on the fluid bulk mean temperature has been used for determining the interfacial heat and mass transfer coefficients. However, the mass and energy balance formulations in the two-equation model indicate that the Nusselt number should be evaluated based on the fluid mean temperature instead of the fluid bulk mean temperature. Therefore, in this study, to correctly model the heat and mass transfer coefficients, the Nusselt number based on the fluid mean temperature was newly obtained for the square and circular cross-sections under two different thermal boundary conditions (i.e., constant heat flux and constant temperature at the wall). In order to do that, the present study employed the numerical as well as analytical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号