首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays, Internet of things has become as an inevitable aspect of humans’ IT-based life. A huge number of geo-distributed IoT enabled devices such as smart phones, smart cameras, health care systems, vehicles, etc. are connected to the Internet and manage users’ applications. The IoT applications are generally time sensitive, so that giving them up to Cloud and receiving the response may violate their required deadline, due to distance between user device and centralized Cloud data center and consequently increasing network latency. Fog environment, as an intermediate layer between Cloud and IoT devices, brings a smaller scales of Cloud capabilities closer to user location. Processing real time applications in Fog layer helps more deadlines to be met. Although Fog computing enhances quality of service parameters, limited resources and power of Fog nodes is a challenge in processing applications. Furthermore, the network latency is still an issue for communications between applications’ services and between user device and Fog node, which seriously threatens deadline condition. Regarding to mentioned points, this paper proposes a 3-partite deadline-aware applications’ services placement optimization model in Fog environment which optimizes total power consumption, total resources wastage, and total network latency, simultaneously. The proposed model prioritizes applications in 3 levels based on their associated deadline, and then the model is solved using a parallel model of first fit decreasing and genetic algorithm combination. Simulations results indicates the superiority of proposed approach against counterpart algorithms in terms of reducing power consumption, resource wastage, network latency, and service rejection rate.  相似文献   

2.
Interconnection of the sensing and actuating devices providing the ability to share information across platform through a unified framework for enabling innovative applications. This is achieved by seamless ubiquitous sensing, data analytics and information representation as the unifying framework. Extending the current internet with interconnected objects and devices and their virtual representation has been a growing trend in recent years. Internet of Things (IoT) services are becoming a popular services. This will be supported challenges in a large of aspects such as smart health, green energy, smart home and personalized applications. So, the IoT plays more and more important issue in lifestyle through entertainment such as Games. As of yet, there has not been much research done on IoT environment games as a service. In this paper, we propose schemes of the design and implantation of IT convergence framework for games as a service of IoT. First of all, we discussed what to consider when design and implementation of IT convergence framework for games through contents using user’s mobile devices and various sensors in IoT environment and suggest related techniques. Then, we showed the possibility of games in the IoT environment by creating games and measuring the interactions of users in the IoT environment.  相似文献   

3.
Health care visualization through Internet of Things (IoT) over wireless sensor network (WSN) becomes a current research attention due to medical sensor evolution of devices. The digital technology-based communication system is widely used in all application. Internet of medical thing (IoMT) assisted healthcare application ensures the continuous health monitoring of a patient and provides the early awareness of the one who is suffered without human participation. These smart medical devices may consume with limited resources and also the data generated by these devices are large in size. These IoMT based applications suffer from the issues such as security, anonymity, privacy, and interoperability. To overcome these issues, data aggregation methods are the solution that can concatenate the data generated by the sensors and forward it into the base station through fog node with efficient encryption and decryption. This article proposed a well-organized data aggregation and secured transmission approach. The data generated by the sensor are collected and compressed. Aggregator nodes (AN) received the compressed data and concatenate it. The concatenated and encrypted data is forward to fog node using the enhanced Paillier cryptography-based encryption with Message Authentication code (MAC). Fog node extracts the forwarded data from AN using Fog message extractor method (FME) with decryption. The proposed system ensures data integrity, security and also protects from security threats. This proposed model is simulated in Network Simulator 2.35 and the evaluated simulation results proves that the aggregation with MAC code will ensures the security, privacy and also reduces the communication cost. Fog node usages in between Aggregator and base station, will reduce the cloud server/base station computational overhead and storage cost. The proposed ideology is compared with existing data aggregation schemes in terms of computational cost, storage cost, communication cost and energy cost. Cost of communication takes 18.7 ms which is much lesser than existing schemes.  相似文献   

4.
Fog computing is an emerging paradigm in the Internet of Things (IoT) space, consisting of a middle computation layer, sitting between IoT devices and Cloud servers. Fog computing provides additional computing, storage, and networking resources in close proximity to where data is being generated and/or consumed. As the Fog layer has direct access to data streams generated by IoT devices and responses/commands sent from the Cloud, it is in a critical position in terms of security of the entire IoT system. Currently, there is no specific tool or methodology for analysing the security of Fog computing systems in a comprehensive way. Generic security evaluation procedures applicable to most information technology products are time consuming, costly, and badly suited to the Fog context. In this article, we introduce a methodology for evaluating the security of Fog computing systems in a systematic way. We also apply our methodology to a generic Fog computing system, showcasing how it can be purposefully used by security analysts and system designers.  相似文献   

5.
Many advances have been introduced recently for service-oriented computing and applications (SOCA). The Internet of Things (IoT) has been pervasive in various application domains. Fog/Edge computing models have shown techniques that move computational and analytics capabilities from centralized data centers where most enterprise business services have been located to the edge where most customer’s Things and their data and actions reside. Network functions between the edge and the cloud can be dynamically provisioned and managed through service APIs. Microservice architectures are increasingly used to simplify engineering, deployment and management of distributed services in not only cloud-based powerful machines but also in light-weighted devices. Therefore, a key question for the research in SOCA is how do we leverage existing techniques and develop new ones for coping with and supporting the changes of data and computation resources as well as customer interactions arising in the era of IoT and Fog/Edge computing. In this editorial paper, we attempt to address this question by focusing on the concept of ensembles for IoT, network functions and clouds.  相似文献   

6.
It is predicted by the year 2020, more than 50 billion devices will be connected to the Internet. Traditionally, cloud computing has been used as the preferred platform for aggregating, processing, and analyzing IoT traffic. However, the cloud may not be the preferred platform for IoT devices in terms of responsiveness and immediate processing and analysis of IoT data and requests. For this reason, fog or edge computing has emerged to overcome such problems, whereby fog nodes are placed in close proximity to IoT devices. Fog nodes are primarily responsible of the local aggregation, processing, and analysis of IoT workload, thereby resulting in significant notable performance and responsiveness. One of the open issues and challenges in the area of fog computing is efficient scalability in which a minimal number of fog nodes are allocated based on the IoT workload and such that the SLA and QoS parameters are satisfied. To address this problem, we present a queuing mathematical and analytical model to study and analyze the performance of fog computing system. Our mathematical model determines under any offered IoT workload the number of fog nodes needed so that the QoS parameters are satisfied. From the model, we derived formulas for key performance metrics which include system response time, system loss rate, system throughput, CPU utilization, and the mean number of messages request. Our analytical model is cross-validated using discrete event simulator simulations.  相似文献   

7.
The Journal of Supercomputing - With the rapid increase in the functionality of IoT applications, the services provided by edge/IoT devices have surged in the recent past. Fog computing is gaining...  相似文献   

8.
The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies. Early diagnosis of many diseases will improve the patient life. The cost of health care systems is reduced due to the use of advanced technologies such as Internet of Things (IoT), Wireless Sensor Networks (WSN), Embedded systems, Deep learning approaches and Optimization and aggregation methods. The data generated through these technologies will demand the bandwidth, data rate, latency of the network. In this proposed work, efficient discrete grey wolf optimization (DGWO) based data aggregation scheme using Elliptic curve Elgamal with Message Authentication code (ECEMAC) has been used to aggregate the parameters generated from the wearable sensor devices of the patient. The nodes that are far away from edge node will forward the data to its neighbor cluster head using DGWO. Aggregation scheme will reduce the number of transmissions over the network. The aggregated data are preprocessed at edge node to remove the noise for better diagnosis. Edge node will reduce the overhead of cloud server. The aggregated data are forward to cloud server for central storage and diagnosis. This proposed smart diagnosis will reduce the transmission cost through aggregation scheme which will reduce the energy of the system. Energy cost for proposed system for 300 nodes is 0.34μJ. Various energy cost of existing approaches such as secure privacy preserving data aggregation scheme (SPPDA), concealed data aggregation scheme for multiple application (CDAMA) and secure aggregation scheme (ASAS) are 1.3 μJ, 0.81 μJ and 0.51 μJ respectively. The optimization approaches and encryption method will ensure the data privacy.  相似文献   

9.
地质大数据共享与应用平台、专业移动大数据服务平台等现有集中式物联网数据服务平台多数存在缺乏信誉评估体系、用户隐私泄露、数据防篡改能力弱等安全性问题。为使用户能从海量物联网数据中精准快速地检索出高质量数据,设计并实现基于区块链的数据服务信誉评估模型。利用层次分析法进行信誉评估指标权重计算,采用智能合约和星际文件系统实现物联网数据的存储、验证、保护和共享,通过区块链和Redis缓存技术完成物联网数据和信誉数据的安全快速存取,同时使用环签名技术保证评价真实性并隐藏用户个人信息。测试结果表明,该模型具有去中心化、可信、安全高效和不可篡改的特性,能够满足物联网数据服务平台的信誉评估需求。  相似文献   

10.

The sensed data from Internet of Things (IoT) devices are important for accurate decision making. Thus, the data integrity, non-repudiation, data confidentiality, data freshness, etc., are necessary requirements in sensor-based IoT networks. Further, the IoT devices are resource constrained in terms of computation and communication capabilities. Hence, striking a balance between network lifetime and data security is of utmost importance. The present work explores the sensor-based IoT-specific security threats like, data modification, selective forwarding and replay attacks. Further, a scheme is proposed based on secret sharing and cryptographic hash functions which detects these attacks by a malicious entity and protects the data from passive listeners too. Extensive simulations were performed to evaluate the efficacy of the scheme, and results show that the proposed scheme outperforms previously explored schemes like SIGN-share, SHAM-share, and PIP algorithm, in terms of sensor processing time, energy consumption during in-node processing and aggregation time. Network lifetime has been further analyzed to show the efficacy of the scheme.

  相似文献   

11.
基于分簇的传感器网络数据聚集估算机制   总被引:2,自引:0,他引:2  
谢磊  陈力军  陈道蓄  谢立 《软件学报》2009,20(4):1023-1037
提出一种基于簇结构的传感器网络数据聚集估算机制CASA(clustering-based approximate scheme for data aggregation).在保证用户对数据精确度需求的前提下,CASA 通过最小化网络通信开销以及协调节点间的负载均衡,有效地提高了估算机制的节能性能.CASA 采用最优的分簇规模参数,在基于分簇的网内聚集估算架构中能够最小化网络节点的总体通信开销.此外,CASA 考虑到部署区域感知数据变化率的差异性,采用自适应的误差分配方案来进一步降低网络节点的通信开销,维护节点间的负载均衡.模拟实验结果表明,CASA 估算机制能够显著地提升传感器网络网内数据聚集机制的节能性能,同时保证聚集数据的精确程度.  相似文献   

12.
With the advent of modern technologies,IoT has become an alluring field of research.Since IoT connects everything to the network and transmits big data frequently,it can face issues regarding a large amount of energy loss.In this respect,this paper mainly focuses on reducing the energy loss problem and designing an energy-efficient data transfer scenario between IoT devices and clouds.Consequently,a layered architectural framework for IoT-cloud transmission has been proposed that endorses the improvement in energy efficiency,network lifetime and latency.Furthermore,an Opposition based Competitive Swarm Optimizer oriented clustering approach named OCSO-CA has been proposed to get the optimal set of clusters in the IoT device network.The proposed strategy will help in managing intra-cluster and inter-cluster data communications in an energy-efficient way.Also,a comparative analysis of the proposed approach with the state-of-the-art optimization algorithms for clustering has been performed.  相似文献   

13.
EADEEG:能量感知的无线传感器网络数据收集协议   总被引:29,自引:0,他引:29  
提出了一种基于簇结构的无线传感器网络数据收集协议EADEEG(an energy-aware data gathering protocol for wireless sensor networks).EADEEG通过最小化网络通信开销以及良好的能量负载平衡方法,可以有效地延长网络寿命.与以前的相关研究相比,EADEEG采用了一种全新的簇头竞争参数,能够更好地解决节点能量异构问题.此外,EADEEG也采用了一种简单而有效的簇内节点调度算法,通过控制活动节点的密度,可以在不增加额外控制开销的条件下关闭冗余节点并保证覆盖要求,因此可以进一步延长网络寿命.模拟实验证明,在节点初始能量同构和异构两种情况下,EADEEG协议都能够满足用户对覆盖率的要求,并在网络寿命上大幅度优于LEACH(low energy adaptive clustering hierarchy),PEGASIS(power-efficient gathering in sensor information systems)和DEEG(distributed energy-efficient data gathering and aggregation protocol)协议.  相似文献   

14.
The Internet of Things (IoT) has developed an industrial and medical application in dramatic growth in recent years. Narrow Band-Internet of Things (NB-IoT) is a wireless communication and low power wide area technology based on new IoT devices and enables various services to grow. NB-IoT communication significantly increases the power consumption of user equipment, computer capacity, and spectrum performance. Network communication is complex, and the amount of information these networks have made it extremely difficult to manage the transmissions. Since the communication network failure is inevitable, rapid detection, identification, and recovery are the most reliable; it is essential to the high-speed operation. Narrow Band-IoT (NB-IoT) networking technology has proposed the idea of detecting network communication fault. The NB-IoT technique can help save a lot of energy by significantly reducing the number of retransmission required. The proposed technology proves that this research is a powerful proposition for achieving the ideal energy potential. Performance analysis and simulation results show that the detection mechanism can improve transmission efficiency and effectively reduce network communication failures power consumption.  相似文献   

15.
These days Internet of Things (IoT), which consists of smart objects such as sensor nodes is the most important technology for providing intelligent services. In the IoT ecosystem, wireless sensor networks deliver collected information from IoT devices to a server via sink nodes, and IoT services are provided by peer-to-peer (P2P) networking between the server and the IoT devices. Particularly, IoT applications with wide service area requires the mobile sink nodes to cover the service area. To employ mobile sink nodes, the network adopts delay-tolerant capability by which delay-tolerant nodes try to transmit data when they connect to the mobile sink node in the application service field. However, if the connection status between a IoT device and a mobile sink node is not good, the efficiency of data forwarding will be decreased. In addition, retransmission in bad connection cause high energy consumption for data transmission. Therefore, data forwarding in the delay-tolerant based services needs to take the connection status into account. The proposed method predicts the connection status using naïve Bayesian classifier and determines whether the delay tolerant node transmits data to the mobile sink node or not. Furthermore, the efficiency of the proposed method was validated through extensive computer simulations.  相似文献   

16.
物联网环境下数据转发模型研究   总被引:4,自引:1,他引:3  
随着5G移动通信技术、软件定义网络、命名数据网、移动边缘计算或雾计算等新兴技术或方法的出现及深入研究,物联网应用得到进一步升华。在这种应用场景多样化、服务质量高要求、参与对象普及化的环境下,隶属物联网子范畴的传统无线传感器网络数据转发模型已经不能完全适应这种时代需求,更加适合物联网应用的数据转发模型成为物联网连续性服务保障的基础性问题及研究热点。本文首先对物联网架构及其应用环境下的数据转发关键问题进行了分析;其次,对目前有代表性的物联网数据转发相关研究成果进行分类总结;然后,选取不同物联网场景下典型的数据转发模型及其使用的数学方法进行评述、分析和对比;最后,指出目前研究中存在的问题及相应解决方案,并对未来的发展方向进行了展望。研究表明,5G等新兴技术的出现为物联网环境下数据转发模型研究带来了新的机遇和挑战,今后的工作重点是对物联网环境下数据转发的节能模型和方法进行攻关,为实际应用提供坚实的理论基础。  相似文献   

17.

Fog computing is considered a formidable next-generation complement to cloud computing. Nowadays, in light of the dramatic rise in the number of IoT devices, several problems have been raised in cloud architectures. By introducing fog computing as a mediate layer between the user devices and the cloud, one can extend cloud computing's processing and storage capability. Offloading can be utilized as a mechanism that transfers computations, data, and energy consumption from the resource-limited user devices to resource-rich fog/cloud layers to achieve an optimal experience in the quality of applications and improve the system performance. This paper provides a systematic and comprehensive study to evaluate fog offloading mechanisms' current and recent works. Each selected paper's pros and cons are explored and analyzed to state and address the present potentialities and issues of offloading mechanisms in a fog environment efficiently. We classify offloading mechanisms in a fog system into four groups, including computation-based, energy-based, storage-based, and hybrid approaches. Furthermore, this paper explores offloading metrics, applied algorithms, and evaluation methods related to the chosen offloading mechanisms in fog systems. Additionally, the open challenges and future trends derived from the reviewed studies are discussed.

  相似文献   

18.
Integration of Internet of Things (IoT) with industries revamps the traditional ways in which industries work. Fog computing extends Cloud services to the vicinity of end users. Fog reduces delays induced by communication with the distant clouds in IoT environments. The resource constrained nature of Fog computing nodes demands an efficient placement policy for deploying applications, or their services. The distributed and heterogeneous features of Fog environments deem it imperative to consider the reliability performance parameter in placement decisions to provide services without interruptions. Increasing reliability leads to an increase in the cost. In this article, we propose a service placement policy which addresses the conflicting criteria of service reliability and monetary cost. A multiobjective optimisation problem is formulated and a novel placement policy, Cost and Reliability-aware Eagle-Whale (CREW), is proposed to provide placement decisions ensuring timely service responses. Considering the exponentially large solution space, CREW adopts Eagle strategy based multi-Whale optimisation for taking placement decisions. We have considered real time microservice applications for validating our approaches, and CREW has been experimentally shown to outperform the existing popular multiobjective meta-heuristics such as NSGA-II and MOWOA based placement strategies.  相似文献   

19.
ABSTRACT

With the manifestation of the Internet of Things (IoT) and fog computing, the quantity of edge devices is escalating exponentially all over the world, providing better services to the end user with the help of existing and upcoming communication infrastructures. All of these devices are producing and communicating a huge amount of data and control information around this open IoT environment. A large amount of this information contains personal and important information for the user as well as for the organization. The number of attack vectors for malicious users is high due to the openness, distributed nature, and lack of control over the whole IoT environment. For building the IoT as an effective service platform, end users need to trust the system. For this reason, security and privacy of information in the IoT is a great concern in critical infrastructures such as the smart home, smart city, smart healthcare, smart industry, etc. In this article, we propose three information hiding techniques for protecting communication in critical IoT infrastructure with the help of steganography, where RGB images are used as carriers for the information. We hide the information in the deeper layer of the image channels with minimum distortion in the least significant bit (lsb) to be used as indication of data. We analyze our technique both mathematically and experimentally. Mathematically, we show that the adversary cannot predict the actual information by analysis. The proposed approach achieved better imperceptibility and capacity than the various existing techniques along with better resistance to steganalysis attacks such as histogram analysis and RS analysis, as proven experimentally.  相似文献   

20.
海量的物联网数据拥有巨大价值,而现有基于云的数据共享机制,面临单点故障、内部泄露等问题,无法确保用户数据的安全共享。为实现高效可信的数据共享,利用区块链技术,提出了基于区块链的5G物联网数据共享方案。该方案首先设计了数据共享框架和数据共享流程;然后基于闪电网络方案,提出了面向物联网数据共享的链下交易机制。实验分析表明,基于区块链的5G物联网数据共享方案具有较强的抗攻击能力;基于闪电网络的交易机制,能够大幅提高交易吞吐量、降低交易时延。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号