首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
针对单幅图像超分辨率(single image super-resolution, SISR)重建算法存在低分辨率图像(LR)到高分辨率图像(HR)的映射学习具有不适定性,深层神经网络收敛慢且缺乏对高频信息的学习能力以及在深层神经网络传播过程中图像特征信息存在丢失的问题.本文提出了基于对偶回归和残差注意力机制的图像超分辨率重建网络.首先,通过对偶回归约束映射空间.其次,融合通道和空间注意力机制构造了残差注意力模块(RCSAB),加快模型收敛速度的同时,有效增强了对高频信息的学习.最后,融入密集特征融合模块,增强了特征信息流动性.在Set5、Set14、BSD100、Urban100四种基准数据集上与目前主流的单幅图像超分辨率算法进行对比,实验结果表明该方法无论是在客观质量评价指标还是主观视觉效果均优于对比算法.  相似文献   

2.
图像超分辨(SR)方法通常利用深度神经网络学习从低分辨率图像(Low Resolution, LR)到高分辨率图像(High Resolution, HR)进行非线性映射重建。但是从LR图像到HR图像的映射往往是一个不适定问题,即存在无限的HR图像可以降采样到同一LR图像。为了解决该问题,本文对LR图像引入附加约束来减少可能的函数空间,并提出了基于双回归网络—双重残差注意力网络(Dual Residual Attention Network, DRAN)的图像超分辨率重构方法(DRAN-SR)。DRAN模型中原始网络负责将低分辨率(LR)图像重构为高分辨率(HR)图像,对偶回归网络负责估计下采样核和重构LR图像,从而形成一个闭环来提供额外的监督效果。实验结果表明,DRAN-SR比现有方法具有更好的峰值信噪比(Peak Signal to Noise Ratio, PSNR)和结构相似性(Structural SIMilarity, SSIM)。  相似文献   

3.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

4.
樊帆  高媛  秦品乐  王丽芳 《计算机应用》2020,40(12):3624-3630
为了有效解决腹部磁共振成像(MRI)影像在超分辨率重建过程中因高频细节丢失引起的边界不明显、腹部器官显示不清晰以及单模型单尺度重建应用不方便等问题,提出了一种基于并行通道-空间注意力机制的多尺度超分辨率重建算法。首先,构造了并行通道-空间注意力残差块,通过空间注意力模块获取图像重点区域与高频信息的相关性,通过通道注意力模块获取图像各通道对关键信息响应程度的权重,同时拓宽网络的特征提取层以增加流入注意力模块的特征信息;此外,添加了权重归一化层,保证了网络的训练效率;最后,在网络末端应用多尺度上采样层,增加了网络的灵活性和可用性。实验结果表明,相较深层残差通道注意力超分辨率网络(RCAN),所提算法在×2、×3、×4尺度下的峰值信噪比(PSNR)平均提高了0.68 dB。所提算法有效提升了图像的重建质量。  相似文献   

5.
樊帆  高媛  秦品乐  王丽芳 《计算机应用》2005,40(12):3624-3630
为了有效解决腹部磁共振成像(MRI)影像在超分辨率重建过程中因高频细节丢失引起的边界不明显、腹部器官显示不清晰以及单模型单尺度重建应用不方便等问题,提出了一种基于并行通道-空间注意力机制的多尺度超分辨率重建算法。首先,构造了并行通道-空间注意力残差块,通过空间注意力模块获取图像重点区域与高频信息的相关性,通过通道注意力模块获取图像各通道对关键信息响应程度的权重,同时拓宽网络的特征提取层以增加流入注意力模块的特征信息;此外,添加了权重归一化层,保证了网络的训练效率;最后,在网络末端应用多尺度上采样层,增加了网络的灵活性和可用性。实验结果表明,相较深层残差通道注意力超分辨率网络(RCAN),所提算法在×2、×3、×4尺度下的峰值信噪比(PSNR)平均提高了0.68 dB。所提算法有效提升了图像的重建质量。  相似文献   

6.
针对传统单幅图像超分辨率深度学习方法将不同尺度低分辨率视作独立任务的问题,提出一种以残差通道注意力模块作为特征提取,元上采样模块作为放大模块的超分辨率网络。残差通道注意力机制可以滤除冗余低频信息减少网络深度,使元上采样模块更好地训练不同尺度低分辨率图像特征间的关系,实现任意尺度的超分辨率网络。为了验证该方法有效性,在Set5、Set14、Urban100等公共数据集上实验。实验结果表明,该方法在整数与非整数倍尺度都能很好地恢复高分辨率图像。  相似文献   

7.
目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。方法 设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。结果 在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。结论 区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。  相似文献   

8.
目的 将低分辨率(low-resolution,LR)图像映射到高分辨率(high-resolution,HR)图像是典型的不适定恢复问题,即输出的HR图像和输入的LR图像之间的映射是多对一的,这意味着仅通过增加网络深度来确定HR图像与LR图像之间的特定映射关系是非常困难的。针对该问题,本文提出一种基于多监督光滑化损失函数的图像超分辨率方法。方法 该方法主体由LR图像上采样通道和HR图像下采样通道两部分组成。各通道分为两个阶段,每个阶段均包括浅层特征提取模块、基于迭代采样错误反馈机制的采样模块、全局特征融合模块和图像重建模块。将LR图像上采样通道第1阶段结果与HR图像下采样通道第1阶段结果对比,然后将HR原图像和HR图像下采样通道第2阶段结果作为约束构成多监督,使映射函数空间尽可能精确,并将多监督损失函数光滑化保证梯度在全局范围内传递。结果 在基准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)、Urban100(urban scenes dataset)、Manga109(109 manga volumes dataset)数据集...  相似文献   

9.
程德强  朱星光  寇旗旗  陈亮亮  王晓艺  赵佳敏 《智能系统学报》2012,(收录汇总):1173-1184
针对目前诸多图像超分辨率重建算法通过采用单一通道网络结构无法充分利用特征信息的问题,提出了一种可以高效利用特征信息的融合分层特征与残差蒸馏连接的超分辨率重建算法。该方法首先设计了一种将分层特征融合与残差连接相结合的连接方式,对图像深层特征与浅层特征进行充分融合,提升了网络对于特征信息的利用率;其次设计出一种残差蒸馏注意力模块,使网络更高效地关注图像关键特征,从而可以更好地恢复出重建图像的细节特征。实验结果表明,所提出的算法模型不仅在4种测试集上呈现出更优秀的客观评价指标,而且在主观视觉效果上也呈现出更好的重建效果。具体在Set14测试集上,该模型4倍重建结果的峰值信噪比相对于对比模型平均提升了0.85 dB,结构相似度平均提升了0.034,充分证明了该算法模型的有效性。  相似文献   

10.
目的 深度卷积网络在图像超分辨率重建领域具有优异性能,越来越多的方法趋向于更深、更宽的网络设计。然而,复杂的网络结构对计算资源的要求也越来越高。随着智能边缘设备(如智能手机)的流行,高效能的超分重建算法有着巨大的实际应用场景。因此,本文提出一种极轻量的高效超分网络,通过循环特征选择单元和参数共享机制,不仅大幅降低了参数量和浮点运算次数(floating point operations,FLOPs),而且具有优异的重建性能。方法 本文网络由浅层特征提取、深层特征提取和上采样重建3部分构成。浅层特征提取模块包含一个卷积层,产生的特征循环经过一个带有高效通道注意力模块的特征选择单元进行非线性映射提取出深层特征。该特征选择单元含有多个卷积层的特征增强模块,通过保留每个卷积层的部分特征并在模块末端融合增强层次信息。通过高效通道注意力模块重新调整各通道的特征。借助循环机制(循环6次)可以有效提升性能且大幅减少参数量。上采样重建通过参数共享的上采样模块同时将浅层与深层特征进放大、融合得到高分辨率图像。结果 与先进的轻量级网络进行对比,本文网络极大减少了参数量和FLOPs,在Set5、Set14、B100、Urban100和Manga109等基准测试数据集上进行定量评估,在图像质量指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上也获得了更好的结果。结论 本文通过循环的特征选择单元有效挖掘出图像的高频信息,并通过参数共享机制极大减少了参数量,实现了轻量的高质量超分重建。  相似文献   

11.
王林  李聪会 《计算机工程》2021,47(2):314-320
行人属性识别易受视角、尺度和光照等非理想自然条件变化的影响,且某些细粒度属性识别难度较大。为此,提出一种多级注意力跳跃连接网络MLASC-Net。在网络中间层,利用敏感注意力模块在通道及空间维度上对原特征向量进行筛选加权,设计多级跳跃连接结构来融合所提取的显著性特征。在网络顶层,改进多尺度金字塔池化以融合局部特征和全局特征。在网络输出层,结合验证损失算法自适应更新损失层,加速模型的收敛并提高精度。在PETA和RAP数据集上的实验结果表明,MLASC-Net的识别准确率相较原基准网络分别提高约4.62和6.54个百分点,其在识别效果和模型收敛速度上有明显优势,同时在非理想自然条件下具有良好的泛化能力,可有效提高网络对细粒度属性的鲁棒性。  相似文献   

12.
吴荣贵  蒋平 《计算机应用研究》2020,37(12):3788-3791
为解决现有基于深度学习的超分辨算法模型没有充分利用各个层次的特征信息导致重建精度不高、参数量大的问题,提出了一个内外双重密集连接结构——密集跳跃注意连接网络。内层结构中,对原始密集级联结构进行改进,提出了通道可分密集级联块;外层结构采用密集残差连接结合注意力机制将由密集块提取的特征进行融合,从而达到更少卷积层、更高精度的效果。在多个基准数据集上测试,提出的网络较其他网络层数体量相近的算法精度更高、参数量更少。  相似文献   

13.
针对经典的基于卷积神经网络的单幅图像超分辨率重建方法网络较浅、提取的特征少、重建图像模糊等问题,提出了一种改进的卷积神经网络的单幅图像超分辨率重建方法,设计了由密集残差网络和反卷积网络组成的新型深度卷积神经网络结构。原始低分辨率图像输入网络,利用密集残差学习网络获取更丰富的有效特征并加快特征梯度流动,其次通过反卷积层将图像特征上采样到目标图像大小,再利用密集残差学习高维特征,最后融合不同卷积核提取的特征得到最终的重建图像。在Set5和Set14数据集上进行了实验,并和Bicubic、K-SVD、SelfEx、SRCNN等经典重建方法进行了对比,重建出的图像在整体清晰度和边缘锐度方面更好,另外峰值信噪比(PSNR)平均分别提高了2.69?dB、1.68?dB、0.74?dB和0.61?dB。实验结果表明,该方法能够获取更丰富的细节信息,得到更好的视觉效果,达到了图像超分辨率的增强任务。  相似文献   

14.
目的 现有医学图像超分辨率方法主要针对单一模态图像进行设计,然而在磁共振成像(magnetic resonance imaging, MRI)技术的诸多应用场合,往往需要采集不同成像参数下的多模态图像。针对单一模态的方法无法利用不同模态图像之间的关联信息,很大程度上限制了重建性能。目前超分辨率网络模型参数量往往较大,导致计算和存储代价较高。为此,本文提出了一个轻量级残差密集注意力网络,以一个统一的网络模型同时实现多模态MR图像的超分辨率重建。方法 首先将不同模态的MR图像堆叠后输入网络,在低分辨率空间中提取共有特征,之后采用设计的残差密集注意力模块进一步精炼特征,再通过一个亚像素卷积层上采样到高分辨率空间,最终分别重建出不同模态的高分辨率图像。结果 本文采用MICCAI (medical image computing and computer assisted intervention) BraTS (brain tumor segmentation) 2019数据集中的T1和T2加权MR图像对网络进行训练和测试,并与8种代表性超分辨率方法进行对比。实验结果表明,本文方法可以取得优于...  相似文献   

15.
脊柱磁共振(magnetic resonance,MR)图像精确分割是脊柱配准、三维重建等技术的前提。传统脊柱MR图像分割方法过程繁琐,精度低。为克服传统方法弊端,提出了一种基于深度学习的脊柱MR图像自动分割方法。该方法构建对称通道卷积神经网络提取多尺度图像特征,通过残差连接解决训练中网络退化问题,同时用跳跃连接层连接中间层特征减少信息丢失。在搭建的网络模型中加入卷积块注意力机制关注空间和通道中的有效特征。实验结果表明,该模型在测试集上的平均DSC系数为0.861?9,相比FCN、U-Net、DeeplabV3+和UNet++网络模型分别提高了15.34%、7.08%、5.79%、3.1%。该模型可应用于临床实践中提升脊柱MR图像的分割精度。  相似文献   

16.
针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法。构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通道注意力机制,增强高频信息通道的表征能力。引入卷积注意块的特征提取结构,减少高频图像细节信息的丢失。在网络的重建层,引入全局跳远连接结构,进一步丰富重建的高分辨率图像信息的流动。实验结果表明,所提算法在Set5等基准数据集上的PSNR、SSIM比其他基于深度卷积神经网络的方法均明显提升,验证了提出方法的有效性与先进性。  相似文献   

17.
目的 近年来,深度卷积神经网络成为单帧图像超分辨率重建任务中的研究热点。针对多数网络结构均是采用链式堆叠方式使得网络层间联系弱以及分层特征不能充分利用等问题,提出了多阶段融合网络的图像超分辨重建方法,进一步提高重建质量。方法 首先利用特征提取网络得到图像的低频特征,并将其作为两个子网络的输入,其一通过编码网络得到低分辨率图像的结构特征信息,其二通过阶段特征融合单元组成的多路径前馈网络得到高频特征,其中融合单元将网络连续几层的特征进行融合处理并以自适应的方式获得有效特征。然后利用多路径连接的方式连接不同的特征融合单元以增强融合单元之间的联系,提取更多的有效特征,同时提高分层特征的利用率。最后将两个子网络得到的特征进行融合后,利用残差学习完成高分辨图像的重建。结果 在4个基准测试集Set5、Set14、B100和Urban100上进行实验,其中放大规模为4时,峰值信噪比分别为31.69 dB、28.24 dB、27.39 dB和25.46 dB,相比其他方法的结果具有一定提升。结论 本文提出的网络克服了链式结构的弊端,通过充分利用分层特征提取更多的高频信息,同时利用低分辨率图像本身携带的结构特征信息共同完成重建,并取得了较好的重建效果。  相似文献   

18.
医学图像的清晰与否直接影响临床诊断。由于成像设备与环境因素的限制,往往不能直接获得高分辨率的图像,且大多数智能终端的硬件并不适合运行大规模深度神经网络模型,因此提出一种拥有较少的层和参数的轻量密集神经网络模型。首先,网络中使用密集块和跳层结构进行全局和局部图像特征学习,并将更多特征信息传入激活函数,从而使网络中浅层低级的图像特征更容易传播到高层,由此提高医学图像超分辨率重建的质量;然后,采用分阶段方法训练网络,并以双任务损失加强网络学习中的监督指导,从而解决高倍图像超分辨率重建导致的网络训练难度增加的问题。实验结果表明,与最近邻(NN)插值、双线性插值、双立方插值、基于卷积神经网络(CNN)的算法以及基于残差神经网络的算法相比,所提模型能更好地重建出医学图像的纹理细节,获得更高的峰值信噪比(PSNR)和结构相似性(SSIM),在训练速度和硬件消耗方面均取得了良好的效果,具有较高的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号