首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
城市道路上车辆行人的检测是自动驾驶汽车环境感知功能中的核心要素之一。针对现有城市道路车辆行人检测任务在使用目标检测算法检测精度低,检测位置不准确等问题,提出一种基于改进YOLOv5的城市道路车辆行人检测新算法—HCA-YOLOv5目标检测算法。通过K-means++聚类算法重新设计并更新锚框初始值并将其匹配到对应特征层,以提高模型对检测目标的检测性能;通过利用城市道路图像中不同高度上的类别分部特点并结合Transformer结构改进HANet的注意力结构,提高I模型I对输入图像的全局上下文特征提取能力,加强网络.对城市道路场景图片中不同类别的辨别.能力。实验结果表明,在自动驾驶数据集KTT上,所改进算法的均值平均精度(mAP)达到了9193%,相比原YOLOv5算法mAP提高了292个百分点,满足了城市道路场景下车辆形容的准确率要求。  相似文献   

2.
随着科技的快速发展,智慧交通系统的建设对提升人们的生活品质,提升城市交通服务能力和城市交通管控的科学有效性有着重点意义.文章采用YOLOV5s目标检测算法对行人识别,首先分析YOLOv5s的架构和关键技术,然后通过YOLOv5s对标注好的数据集进行训练,最后就检测效果进行评估分析.实验结果体现出了YOLOv5s对行人检...  相似文献   

3.
行人的检测与跟踪在智能交通、自动驾驶领域中均有广泛的应用。针对图像中小目标检测率低问题,提出了一种YOLOv3的改进方法,并将其应用于小目标的检测。由于小目标所占的像素少、特征不明显,为了获取更多的小目标特征信息,在YOLOv3网络结构的基础上添加三层SPP网络,通过SPP模块实现了局部特征和全局特征,SPP模块中最大的池化核大小要尽可能地接近或者等于需要池化的特征图的大小,特征图经过局部特征与全局特征相融合后,丰富了特征图的表达能力,有利于待检测图像中目标大小差异较大的情况。用改进的YOLOv3算法和原YOLOv3算法在数据集上进行对比实验,结果表明改进后的YOLOv3算法能有效的检测小目标,对小目标的平均准确率有明显的提升。  相似文献   

4.
佩戴安全帽是施工过程中人员安全的重要保障之一,但现有的人工检测不仅耗时耗力而且无法做到实时监测,针对这一现象,提出了一种基于深度学习的安全帽佩戴检测算法。该算法以YOLOv5s网络为基础。在网络的主干网中引入CoordAtt坐标注意力机制模块,考虑全局信息,使得网络分配给安全帽更多的注意力,以此提升对小目标的检测能力;针对原主干网对特征融合不充分的问题,将主干网中的残差块替换成Res2NetBlock结构中的残差块,以此提升YOLOv5s在细粒度上的融合能力。实验结果表明:在自制的安全帽数据集中验证可知,与原有的YOLOv5算法相比,平均精度提升了2.3个百分点,速度提升了18 FPS,与YOLOv3算法相比,平均精度提升了13.8个百分点,速度提升了95 FPS,实现了更准确的轻量高效实时的安全帽佩戴检测。  相似文献   

5.
针对景区内高密度行人检测中遮挡与小目标行人漏检率高、模型复杂度高、计算量大的问题,提出一种YOLOv5-GSPE改进算法模型,在保证精度的同时改善检测效果,降低模型复杂度。改进算法模型通过GhostConv优化主干网络中常规卷积(Conv)降低模型复杂度,并使用空洞卷积改善SPPF模块中池化操作带来的特征信息丢失,提升模型检测时效性,增强主干网络特征提取。提出一种增强的特征金字塔网络—PrFPN,使用同层连接进一步丰富原始输入特征的融合,减少特征提取过程中的特征损失。将引入正态分布计算优化后的EIoU损失函数作为边界框回归损失函数,提高边界框定位精度。实验结果表明,YOLOv5-GSPE算法模型对比YOLOv5s模型在保证检测时效性的情况下整体复杂度降低了12.51%,基于Pedestrian测试集的平均精度提升4.05%,基于WiderPerson测试集的平均精度提升3.28%,并降低了行人遮挡及小目标漏检率,改善了检测效果,该模型的可行性与有效性得到验证。  相似文献   

6.
为了提高行人检测方法的准确率,针对行人图像特征,提出一种基于深度残差网络和YOLO(You Only Look Once)方法的行人检测方法。以加强行人特征表达为目的,通过分析行人在图像中的表达和分布特征,提出一种不影响实时性的矩形输入深度残差网络分类模型以改进YOLO检测方法,使模型能够更好的表征行人;为了进一步提高模型的准确率和泛化能力,采用了混合行人数据集训练的方式,提取VOC数据集的行人数据与INRIA数据集组成混合数据集进行训练,明显降低了漏检率;并且利用聚类分析预测框的方法重新设计了初始预测框,提高行人定位能力并加快收敛。经公开的INRIA数据集的测试实验证明,本方法较主流的行人检测方法每张图片误检率有明显改善,降低至13.86%,有1.51%至58.62%不同程度的提升,并且本方法拥有良好的实时性和泛化能力,实用性强。  相似文献   

7.
针对大规模拥挤场景视频中行人目标小、行人遮挡和行人交叠而导致的检测困难等问题,本文将逐像素预测目标检测框架—全卷积单阶段目标检测FCOS(fully convolutional one-stage object detection)应用于行人检测,提出一种改进的主干网络用于提取行人特征,通过增加尺度回归实现目标行人的多...  相似文献   

8.
韩冲  汪洋  李鹏  周晚林 《计算机应用研究》2021,38(9):2848-2851,2860
针对拥挤场景下行人漏检率较高的问题,设计了新的类平衡策略.其次,采用度量学习方法改进目前的行人语义提取效果,并设计了新的距离度量方法.最后,结合提取的行人语义信息设计了新的非极大值抑制算法.在行人检测数据集CityPersons和CrowdHuman上,与目前的行人检测器进行对比,效果优于目前最优无锚框的行人检测器,同时也证明了度量学习方法在行人检测中的有效性.  相似文献   

9.
由于足球比赛场景中密集人群、移动小目标居多, YOLOv3算法存在检测精确度较低且模型参数量较大等问题, 使其无法部署在资源算力有限的移动设备上, 本文提出了一种基于改进YOLOv3的行人检测方法, 将Darknet-53主干特征提取网络替换为更加高效且轻量化的GhostNet网络; 同时选取了4个尺度的检测分支层并采用K-means++算法改善anchor box的聚类效果; 添加空间金字塔池化对输入图像实现相同大小的输出; 提出CIoU损失函数来计算目标定位损失值; 添加heatmap热力图可视化并在训练中使用Mosaic数据增强. 实验结果表明, YOLOv3-GhostNet在VOC融合数据集上mAP达到90.97%的同时相比YOLOv3算法提高了1.75%, 参数量减少了约81.4%且实时检测速率提高了约1.5倍, 在小型移动设备上表现出不错的检测效果.  相似文献   

10.
空巢老人跌倒受伤,如不及时就医,可能会导致终身残疾,甚至危及生命。为此设计基于YOLOv5(单阶段目标检测算法)的空巢老人跌倒检测系统。首先自建跌倒数据集约7,000张,按1:4划分为训练集和验证集训练;然后搭建监控视频流、编写可视化检测客户端、部署服务器端,同时将短信阈值及进程融合到检测系统,实现老人跌倒行为的及时反馈;最后对约100个实际监控视频进行测试、分析。实验结果表明,系统对跌倒和正常两种状态的检测平均精度为94.23%,跌倒后正确发送短信为45次,发送成功率约98.10%,能达到较理想的效果。  相似文献   

11.
在智能视频监控系统的行人检测中,目前使用的目标检测算法R-CNN和YOLO系列算法或速度较慢,无法满足实时性要求;或需要较大的GPU显存空间,难以部署。YOLOv3-tiny算法作为YOLO系列的精简版本,对设备要求较低、速度快,但该算法精度较低。本文通过调整YOLOv3-tiny算法的grid cell横纵方向数量、优化YOLOv3-tiny算法网络结构、聚类确定anchor的数量及尺寸,得到改进的YOLO-Y算法,并通过数据增强方法对训练数据集进行扩充。改进的YOLO-Y算法将mAP从90%提升到92%,Recall从95%提升到97%,检测速度达到26帧/s,占用约1 GB显存空间。实验结果表明改进的YOLO-Y算法显著提高了算法检测精度,具有实时性,且不需要太大的显存空间,满足大部分智能视频监控系统的要求。  相似文献   

12.
针对目前车载计算单元的计算资源和计算能力有限,不能运行网络层次较深的目标检测算法,设计了一种轻量化的网络模型用于对拥挤行人场景的检测,将Darknet53骨干网络替换为GhostNet,通过引入线性计算获得与普通卷积相似的特征图来减少计算资源消耗;引入空间金字塔池化模块实现多尺度融合,加强特征提取;提出使用更加高效的搜索机制改进卷积块注意力机制模块,联合分类网络AlexNet对自适应搜索广度k值进行选取,进一步提高网络性能;采用Grad-CAM算法将网络模型实现热力图可视化来对注意力机制进行分析;引入CIOU损失函数实现真实框和预测值在中心点上的拟合,以此来加速模型收敛和实现更加精确的定位。研究结果表明:改进后的网络在WiderPerson行人检测数据集上行人类别查准率达到75.35%,相比于改进前的模型在行人查准率和平均查准率上分别提高了5.76个百分点和3.28个百分点。在Visdrone数据集上,改进后的网络平均查准率达到35.6%,在基本接近于YOLOv3的基础上,每秒检测图片的数量可以达到60张,相较于传统的单阶段检测算法,检测速率最高提升了52.1%,能满足移动设备以及车载...  相似文献   

13.
针对煤矿井下环境恶劣、光照差、背景混杂、行人模糊、行人多尺度等问题,提出了一种改进的Faster RCNN煤矿井下行人检测方法,使用深度卷积神经网络代替传统的手工设计特征方式自动地从图片中提取特征。利用深度学习通用目标检测框架Faster RCNN,以Faster RCNN算法为基础,对候选区域网络(Region Proposals Network,RPN)结构进行了改进,提出了一种“金字塔RPN”结构,来解决井下行人存在的多尺度问题;同时算法中加入了特征融合技术,将不同卷积层输出的特征图进行融合,增强煤矿井下模糊、遮挡和小目标行人的检测性能。实验结果表明:改进的Faster RCNN可以有效解决井下行人检测问题,在井下行人数据集上获得了90%的检测准确率,并在公测数据集VOC 07上对改进算法进行了验证。  相似文献   

14.
视频行人检测是计算机视觉的一个重要应用,本文利用深度学习检测近似垂直视角的行人,但若单纯检测行人,易受与行人语义相关的行人附属属性(如背包和帽子)的干扰,容易造成误检.本文提出一种基于更快区域卷积神经网络的联合语义行人检测方法:首先调整网络模型,增强对小目标的辨别力,使其可以有效的检测行人和行人的语义属性;然后利用空间关系建立行人及其语义属性的关联,合并行人与其语义信息,并对候选行人目标进行自适应得分调整,结合行人语义属性判断候选行人目标.大量的实验表明,本文的方法精度高,速度快,具有实用价值,且检出的行人与其语义属性还可用于后续的人数统计和行人行为分析.  相似文献   

15.
行人检测在智能交通、智能监控、无人驾驶、行人分析等领域都有广泛应用,随着技术发展,对行人检测技术的精度要求也越来越高。对遮挡情况下的行人检测技术进行了研究,根据遮挡物的不同,将遮挡分为非目标造成的遮挡及需要检测的目标造成的遮挡。分别总结了处理遮挡情况的传统方法和深度学习方法,并对每一类方法模型的主要思想和核心问题进行了分析和讨论。对遮挡下的行人检测技术在未来发展中亟待解决的问题提出展望。  相似文献   

16.
近年来,卷积神经网络在行人检测领域取得了同其他方法相似甚至更好的检测成绩,然而缓慢的检测速度远不能满足现实需求.针对这一问题,本文提出一种实时的行人检测方法,将分散的检测过程整合成单一的深度网络模型,被检测图片通过模型的计算可以直接输出检测结果.使用扩充的ETH数据集进行训练测试,实验结果表明,在保证准确率的情况下,该方法检测速度极快,可以满足实时检测的目的.  相似文献   

17.
对于血液中红细胞、白细胞、血小板等成分的观察和计数是临床医学诊断的重要依据.血细胞的异常意味着可能存在凝血异常、感染、炎症等与血液相关的问题.人工检测血细胞不仅耗费人力,且容易出现误检、漏检的情况.因此,针对上述情况,提出一种新颖的血细胞检测算法—YOLOv5-CBF.该算法在YOLOv5框架的基础上,通过在主干网络中加入坐标注意力(coordinate attention, CA)机制,提高检测精度;将颈部网络中的FPN+PAN结构中改为结合了跨尺度特征融合方法 (bidirectional feature pyramid network, BiFPN)思想的特征融合结构,使目标多尺度特征有效融合;在三尺度检测的基础上增加了一个小目标检测层,提高对数据集中小目标血小板的识别精度.通过在数据集BCCD上进行的大量的实验结果表明:与传统的YOLOv5算法相比较,该算法在3类血细胞检测的平均精度提升2.7%,试验效果良好,该算法对血细胞检测具有很高的实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号