共查询到20条相似文献,搜索用时 95 毫秒
1.
2.
知识图谱补全能够将知识图谱补充完整,是知识图谱领域的一个研究热点。基于知识表示学习的知识图谱补全学习知识的向量表示,利用向量的计算挖掘知识图谱中的隐藏关联,具备更高的计算效率和更强的泛化能力,是知识图谱补全最好的方案之一。首先,介绍知识图谱补全和知识表示学习的概念;其次,按照实体和关系是否固定分别介绍静态知识图谱补全和动态知识图谱补全,对两个不同场景下各类算法的思路及改进过程进行详细说明;最后,总结知识图谱补全研究现状并展望未来研究方向。 相似文献
3.
在推荐系统中,单一的学习矩阵分解的内积交互或者利用深度神经网络来捕获用户与项目交互,不足以有效地学习用户与项目的潜在特征.针对这一问题,提出一种在显式反馈与隐式反馈基础上,称为基于深度学习特征表示的协同过滤算法(DLFeaCF).该模型首先学习用户与项目的内积与外积交互;然后在内积的基础上,从隐式映射与特征映射两个方面... 相似文献
4.
智能神经网络程序设计语言NIPL是应用智能神经网络系统理论、开发智能神经网络应用系统的有力工具。着重讨论了NIPL中有关规则的指称语义,从而建立了NIPL中逻辑规则的数学模型,为使用该语言来方便地建立智能神经网络应用系统奠定了基础。 相似文献
5.
6.
设计模式中知识表示的引入 总被引:8,自引:0,他引:8
从人工智能的角度首先提出设计模式实质上是软件工程中知识表示的雏形,并与专家系统的推理骨架进行对比,论证了在设计模式中引入知识表示的必要性,设计模式的语义描述目标主要面向人,还不能很好地面向计算机进而有效集成到CASE环境,为此,提出了基于AI知识表示的新方法,给出了基知识建模的设计模式语义联系模型,并讨论了进一步的研究方向。 相似文献
7.
人体解析的任务是对图片中人物进行像素级识别,将人体各部位和衣物配饰进行归类。该文从基础技术、数据集和评价标准、技术现状3个方面概述了基于深度学习的人体解析技术。首先,介绍了人体解析涉及的基础技术:卷积神经网络、语义分割。其次,从图像数量、类别数目、优缺点等角度,对比了人体解析领域的8种主流数据集;并介绍了4种常用的评价指标。最后,介绍了4种具有代表性的基于深度学习的人体解析方法:基于特征增强、基于人体结构、基于多任务学习、基于生成对抗网络,并归纳了实例人体解析的解决方案,提出了一些尚待发掘的研究思路。 相似文献
8.
点云作为一种重要的三维数据类型,在自动驾驶、机器人、虚拟及增强现实等人工智能方面应用广泛。点云语义分割是点云处理中的关键任务,旨在将点云中的每个点分配给特定的语义类别。综述了国内外基于深度学习的点云语义分割的研究进展。首先,总结了点云语义分割中常用的开源数据集,并介绍了间接基于点云和直接基于点云的深度学习处理方法及其应用进展。此外,给出了这些方法的实验结果,并对他们进行了简要对比。最后,对当前点云语义分割所存在的问题进行了探讨,并提出了未来的研究发展方向。 相似文献
9.
深度学习目前依靠大数据和强算力取得了较大进展,但在样本受限情况下的表现差强人意,主要问题在于函数空间(簇)的建构和在数据集受限情况下算法的设计。据此,本文对受限样本下的深度学习进行了分类综述。另外,从目前对大脑的研究来看,人的认知过程在大脑中是分区域的,每个区域担负的功能是不同的,对每个区域功能的学习过程也应该是有差异的。因此,提出了“功能进阶”式的深度学习的设想,试图构建分区分层多种功能模块组成的网络结构,研究“进阶”式的功能模块训练方法,以期探求“仿人学习”的新路径。 相似文献
10.
轮廓检测旨在提取图像中目标与背景环境的分界线,是计算机视觉研究领域中最基本的问题之一.深度学习技术作为直接从数据中学习特征表示的有效方法,近年来启发轮廓检测领域取得了显著的突破.鉴于此,本文就基于深度学习的轮廓检测研究领域的最新发展进行总结,具体包括:轮廓检测任务中采用的卷积神经网络结构,相关训练数据构造、特征压缩、上采样、代价函数和轮廓细化等关键问题,轮廓检测实验中采用的通用数据集和性能评价指标.最后,分析了基于深度学习的轮廓检测算法的挑战和未来研究趋势,以期为该领域的后续研究提供新思路及参考. 相似文献
11.
根据元路径和可交换矩阵,结合节点一阶和二阶相似性得到最后的传播概率矩阵;利用降噪自动编码器对传播概率矩阵进行降维得到异构信息网络的节点表示;将异构信息网络的节点表示用梯度提升树(GBDT)分类,得到不同百分比训练集下的分类准确率,用聚类指标标准化互信息(NMI)评价聚类效果,用T-SNE展现可视化效果. 在数据集DBLP和AMiner上分别进行实验,相比DeepWalk、node2vec和metapath2vec方法,在应用任务节点分类上,所提出的基于传播概率矩阵的异构信息网络表示学习(HINtpm)的准确率与DeepWalk相比最高提升了24%,聚类指标NMI与DeepWalk相比最高提升了13%. 相似文献
12.
行人重识别(Re-ID)旨在跨像机检索同一目标行人,它是智能视频监控领域的一项关键技术.由于监控场景的复杂性,单模态行人重识别在低光、雾天等极端情况下的适用性较差.因实际应用的需要以及深度学习的快速发展,基于深度学习的多模态行人重识别受到了广泛的关注.本文针对近年来多模态行人重识别的发展脉络进行综述:阐述了传统单模态行人重识别方法存在的不足;归纳了多模态行人重识别的常见应用场景及其优势,以及各数据集的构成;重点分析了各种场景下多模态行人重识别的相关方法及其分类,并探讨了当前研究的热点和挑战;最后,讨论了多模态行人重识别的未来发展趋势及其潜在应用价值. 相似文献
13.
针对野外环境自主车视觉导航问题,提出了一种新颖的基于字典学习与稀疏表示的道路分割算法。该算法以局部图像小片为处理单元,通过选取典型道路图像学习得到路面图像小片的一组字典,并利用车辆前方的一小块区域作为监督,通过在线字典学习对字典进行实时更新,使路面图像小片可在该字典上精确稀疏表示,而非路面图像小片则不能。因此建立了基于字典学习与稀疏表示的分类框架,利用局部图像小片在字典上的稀疏重构误差进行分类。大量实验结果表明,该算法能够适应多变的非结构化道路环境,且对光照、阴影及水坑等具有较好的鲁棒性。 相似文献
14.
设计了面向车辆操纵稳定性控制的车轮制动神经网络PID控制器参数自调整算法,介绍了自行研制的车辆ESP硬件在环试验平台,采用该平台进行了控制算法的台架试验。结果表明:ESP神经网络PID控制算法能有效防止极限工况下车辆丧失操纵稳定性,显著改善车辆的主动安全性。 相似文献
15.
基于卷积神经网络框架,提出一种洗衣机异音识别模型,根据卷积神经网络显著特征提取能力和平移不变性,学习洗衣机的异音特征,实现生产线洗衣机的异音自动智能识别。给出完整的过程解决训练数据集的建立、数据样本不平衡等问题。提出一种用于数据增强的网络模型——音频深度卷积生成对抗网络解决训练样本的稀缺性问题。该模型对传统的深度卷积生成对抗网络进行改进,以更好地适应工业音频的生成。利用该模型能够对原始数据进行扩展,生成洗衣机异音增强数据集,在该数据集的基础上进行卷积神经网络训练,经测试准确率达到0.999。利用添加背景噪声信号的数据集测试洗衣机异音识别模型的泛化能力,正确识别率达到0.902,表明该网络在识别洗衣机异音方面具有良好的鲁棒性。 相似文献
16.
拥塞控制是网络研究的经典课题,可以避免网络因拥塞而性能下降。其在互联网的发展中扮演着重要的角色。近年来,随着机器学习、深度学习和强化学习的兴起,给拥塞控制提供了新的思路。对网络拥塞控制的机制进行了详细分析,阐述了国内外对于该领域的研究现状及进展,将有代表性的解决方案分为基于规则的解决方案、基于路由反馈的解决方案和智能解决方案3类,并详细分析了各方案的原理及优缺点。 相似文献
17.
人群疏散引导系统可在建筑物内发生灾害时有效保护生命安全,减少人员财产损失.针对现有人群疏散引导系统需要人工设计模型和输入参数,工作量大且容易造成误差的问题,本文提出了基于深度强化学习的端到端智能疏散引导方法,设计了基于社会力模型的强化学习智能体仿真交互环境.使智能体可以仅以场景图像为输入,通过与仿真环境的交互和试错自主... 相似文献
18.
为提高核探测器在复杂环境下测量的适应性,提出了一种能谱校正和核素识别方法.针对核信号探测过程中,由于环境温度的交替变化会出现γ能谱偏移导致多核素识别率低的问题,提出了一种基于稀疏表示和多任务学习的核素识别方法.首先建立一个用于描述环境变量对于当前测量能谱影响的迁移矩阵,其次对测量能谱进行建模,该模型可以表示为标准能谱中独立核素能谱的瞬时叠加,由此核素识别问题就转化为多种核素能谱稀疏分解的问题,为求解该非凸优化问题采用交替方向乘子法(ADMM)的多任务学习方法同时优化迁移矩阵并进行稀疏分解,实现多核素识别.为验证该方法的可行性和有效性,利用高低温交变试验箱对Cs I(Tl)探测器的测量环境进行模拟,分别测量得到11种核素和典型混合核素的实际放射性元素能谱数据,以及基于蒙特卡洛分析软件Geant4仿真IAEA规定的27种核素的单一与混合核素数据进行实验.结果表明,提出的方法即使在温度为:-20℃~50℃的环境下依然可以准确地识别多种常用核素. 相似文献
19.
提出了一种基于随机块特征和自适应词典学习的人脸表情识别方法。利用Haar like特征和人脸几何结构信息可靠定位眼睛和嘴巴;在眼睛和嘴巴附近抽取随机块,构建特征矢量;将特征矢量进行词典学习,得到表情词典;根据待测表情在表情词典上的稀疏分解对表情进行分类。在JAFFE和Cohn kanade表情库中进行了对比实验,结果表明该方法具有较好的识别性能,对噪声和遮挡具有较好的鲁棒性。 相似文献
20.
针对语音-人脸图像重建方法缺乏来自不同维度的监督约束及未利用人脸先验信息,导致生成图像和真实图像相似度不高的问题,提出结合年龄监督和人脸先验信息的语音-人脸图像重建方法. 通过预训练的年龄评估模型为当前数据集扩充年龄数据,弥补来自年龄监督信息的缺乏. 通过语音-人脸图像跨模态身份匹配方法,为给定语音检索接近真实人脸的面部图像,将得到的图像作为人脸先验信息使用. 该方法通过定义结合交叉熵损失和对抗损失的联合损失函数,从年龄感、低频内容和局部纹理等方面均衡提升重建图像质量. 基于数据集Voxceleb 1,通过人脸检索实验的方式进行测试,与当前主流方法进行比较和分析. 结果表明,该方法能有效提升生成图像与真实图像的相似度,所生成的图像具有更好的主客观评价结果. 相似文献