首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为解决火焰图像识别在边缘设备,移动端设备环境下模型体积大,准确率低,实时性能差的问题.首先选取ShuffleNetV2作为轻量化主干神经网络,保证模型的实时性;其次,设计了一种新的注意力模块SCDAM (space and channel dual attention module)去同时考虑通道和空间的关联性,针对不同特征的重要程度去赋予不同权重并有效提高模型精度;然后,设计了一种多尺度特征融合模块,使提取到的特征在空间尺度上更加丰富,加强网络对不同尺度的适应性;最后将SCDAM模块以及多尺度模块引入到ShuffleNetV2中并利用迁移学习方式优化模型参数,进一步提高模型精度.在参数量和计算量仅有微量增加的情况下,本算法的精度比ShuffleNetV2提升了3.2%,且单次推理速度仅耗时8.7 ms.实验证明,该算法更加适合应用在计算资源有限情况下,如火药火焰的识别与监控.  相似文献   

2.
针对现有网络在检测高分辨率交通标志图片时速度过慢、精确度较低等问题,提出一种轻量化交通标志检测网络。在MobileNetv3-Large基础上对YOLOv4网络的骨干部分进行优化,针对数据集的特点舍弃部分耗时层,更改第8层和第14层的输出通道数,并改进基础模块中通道域注意力网络的注意力机制,使输出的权重数值能更准确地表征特征的重要程度。在检测头前加入基于弱语义分割的动态增强附件,利用其输出作为空间权重分布来矫正激活区域,以避免提取能力下降导致误检、漏检问题,最终构成YOLOv4-SLite网络。采用滑窗剪裁的方法对高分辨率图片进行训练和预测,从而减少训练时间及增加样本的多样性。在TT100K交通标志数据集上的实验结果表明,相较于YOLOv4基准网络,YOLOv4-SLite网络的mAP@0.5仅下降了0.2%,但模型大小减少了96.5%,响应速度提升了227%,精确度与速度的平衡效果达到了预期。  相似文献   

3.
改进YOLO轻量化网络的口罩检测算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对目前YOLO轻量网络在口罩佩戴检测任务中出现的特征提取不足和特征利用率不高的问题,提出了一种基于改进YOLOv4-tiny的轻量化网络算法.增加Max Module结构以获取更多目标的主要特征,提高检测准确率.提出自下而上的多尺度融合,结合低层信息丰富网络的特征层次,提高特征利用率.使用CIoU作为边框回归损失函数...  相似文献   

4.
针对无人机航拍场景下的实时目标检测任务,以YOLOv5为基础进行改进,给出了一种轻量化的目标检测网络YOLOv5-tiny.通过将原CSPDarknet53骨干网络替换为MobileNetv3,减小了网络模型的参数量,有效提高了检测速度,并进一步通过引入CBAM注意力模块和SiLU激活函数,改善了因网络简化后导致的检测精度下降问题.结合航拍任务数据集VisDrone的特性,优化了先验框尺寸,使用了Mosaic,高斯模糊等数据增强方法,进一步提高了检测效果.与YOLOv5-large网络相比,以降低17.4%的mAP为代价,换取148%的检测效率(FPS)提升,且与YOLOv5s相比,在检测效果略优的情况下,网络规模仅为其60%.  相似文献   

5.
针对狭小空间中目标相互遮挡导致轻型检测网络存在大量漏检、分类错误等问题,基于YOLOv4-tiny提出一种自适应非极大抑制(adaptive non-maximum suppression,A-NMS)的多尺度检测方法。在骨干网络引入大尺度特征图优化策略和金字塔池化模型,增强遮挡目标显著区域特征;设计内嵌空间注意力的双路金字塔特征融合网络,提升浅层细节特征与高级语义信息的融合能力;提出区域目标密度与边界框中心距离因子相关联的动态NMS阈值设定方法,并在后处理阶段代替传统IoU-NMS算法,进一步减少漏检。实验结果表明,与YOLOv4-tiny算法相比,改进算法在公开数据集PASCAL VOC07+12和自制数据集上mAP值分别提高2.84个百分点和3.06个百分点,FPS保持在87.9,对遮挡目标的检测能力显著提升,满足移动端对狭小复杂场景实时检测的需求。  相似文献   

6.
王宏  钱清  王欢  龙永 《计算机应用》2023,(9):2692-2699
卷积神经网络(CNN)因辨识度高、易于理解、可学习性强而被用于图像取证,但它固有的感受野增加缓慢、忽略长端依赖性、计算量庞大等缺点导致深度学习算法的精度与轻量化部署效果并不理想,不适用于以轻量化形式实现图像篡改定位的场景。为解决上述问题,提出一种基于轻量化网络的图像复制-粘贴篡改检测算法——LKA-EfficientNet(Large Kernel Attention EfficientNet)。LKA-EfficientNet具有长端依赖性和全局感受野的特性,且优化了EfficientNetV2的参数量,提高了图像篡改定位速度和精度。首先,将输入图像通过基于大核注意力(LKA)卷积的基干网络进行处理,得到候选特征图;随后,使用不同尺寸的特征图构建特征金字塔进行特征匹配;最后,将特征匹配后的特征图进行融合以定位图像篡改区域;此外,LKA-EfficientNet使用三元组交叉熵损失函数进一步提升了算法定位篡改图像的精度。实验结果表明,LKA-EfficientNet与同类型的Dense-InceptionNet算法相比,不仅能够降低29.54%的浮点运算量,而且F1分数也提高了4.88...  相似文献   

7.
针对当前基于深度神经网络的目标检测往往存在计算复杂度高、对硬件要求苛刻、难以在嵌入式平台和移动智能设备上运行且运行速率低等问题,提出一种基于YOLOv4(You Only Look Once Version4)的轻量化混合神经网络.此混合网络主干特征提取网络采用轻量级MobileNeXt网络模型,并使用改进后RFB(R...  相似文献   

8.
9.
针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。  相似文献   

10.
小目标检测是计算机视觉领域最具挑战性的问题之一。相比大目标,小目标覆盖面积小,空间分辨率低,可用特征少,检测效果通常不理想。近年来,基于深度卷积神经网络的小目标检测算法蓬勃发展,并在卫星遥感、无人驾驶等领域取得了重大成就。文中对国内外现有的小目标检测算法进行了归类、分析和比较。首先介绍小目标检测的难点和常用的数据集;接着分别从骨干网络、金字塔结构、锚框设计、优化目标、增益组件5个方面系统地梳理了已有检测算法,为进一步改进小目标检测算法的性能提供了思路;然后对现有小目标检测算法进行全面总结,并比较分析了列举算法在常用数据集上的性能;最后介绍了小目标检测的应用前景,并对该领域未来的研究方向做出了展望。  相似文献   

11.
李姚舜  刘黎志 《计算机应用》2022,42(9):2900-2908
智慧工地中的设备内存和计算能力有限,在现场的设备上通过目标检测对钢筋进行实时检测具有很大的难度,而且其钢筋检测速度慢、模型部署成本高。针对这些问题,在YOLOv3网络的基础上,提出了一个嵌入注意力机制的轻量级钢筋检测网络RebarNet。首先,利用残差块作为网络的基本单元来构建特征提取结构,并用其提取局部和上下文信息;其次,在残差块中添加通道注意力(CA)模块和空间注意力(SA)模块,以调整特征图的注意力权重,并提升网络提取特征的能力;然后,采用特征金字塔融合模块,以增大网络的感受野,并优化中等钢筋图像的提取效果;最后,输出经过8倍下采样后的52×52通道的特征图用于后处理和钢筋检测。实验结果表明,所提网络的参数量仅为Darknet53网络的5%,在钢筋测试集上以106.8 FPS的速度达到了92.7%的mAP。与现有的EfficientDet、SSD、CenterNet、RetinaNet、Faster RCNN、YOLOv3、YOLOv4和YOLOv5m等8个目标检测网络相比,RebarNet具有更短的训练时间(24.5 s)、最低的显存占用(1 956 MB)、最小的模型权重文件(13 MB)。与目前效果最好的YOLOv5m网络相比,RebarNet的mAP略低0.4个百分点,然而其检测速度上升了48 FPS,是YOLOv5m网络的1.8倍。以上结果表明,所提出的网络有助于完成智慧工地中要求实现的高效、准确的钢筋检测任务。  相似文献   

12.
保持安全社交距离是有效防止病毒传播的重要手段之一,不仅可以减少感染者数量和医疗负担,同时也极大降低死亡率.在YOLOv4框架基础上使用轻量化网络E-GhostNet代替原网络中的CSPDarknet-53, E-GhostNet网络在输入数据和原始Ghost模块生成的输出特征之间建立关系,使网络能够捕获上下文特征.然后,在E-Ghost Net中引入坐标注意力机制(CA)增强模型对有效特征的关注.另外,使用SIoU损失函数更换CIoU损失获得更快的收敛速度和优化效果.最后,结合DeepSORT多目标跟踪算法来检测和标记行人,并使用仿射变换(IPM)判定行人间距离的违规行为.实验结果显示,该网络检测速度为40 FPS,精度值达到85.71%,相比原始GhostNet算法提升2.57%,达到实时行人距离检测的效果.  相似文献   

13.
针对现有的对安全帽佩戴检测算法的参数多、网络复杂、计算量大、不利于在嵌入式等设备进行部署,且对遮挡目标辨别度差等问题,提出了一种改进的轻量级的安全帽检测算法YOLO-M3,先将YOLOv5s主干网络替换为MobileNetV3来进行特征提取,降低了网络的参数量和计算量.使用DIoU-NMS替换NMS,提高对遮挡目标的辨...  相似文献   

14.
电力设备的锈蚀检测作为电力系统故障检测中非常重要的组成部分,需要被快速准确的识别出来.本文结合注意力模型提出一种基于轻量级SSD的电力设备锈蚀目标检测算法,可以有效地对电力设备的锈蚀区域进行检测.本文算法模型利用深度可分离卷积代替标准卷积来大幅度压缩模型,并在此基础上提出了一种基于注意力模型的上采样特征融合策略用于弥补缩减模型结构带来的精度损失.该算法在RustDetection数据集上相比较标准SSD可以做到在参数量减少63.6%,速度提升46.7%的情况下提升10.47%的准确度和5.99%的平均精度.  相似文献   

15.
针对工业场景下设备资源有限的情况,提出一种改进YOLOv5的轻量化带钢缺陷检测模型.首先,使用Shuffle Netv2代替主干特征提取网络,优化模型参数量和运行速度;其次,采用轻量级上采样算子CARAFE (contentaware reassembly of features),在增大感受野的同时进一步降低参数和计算量;同时引入GSConv层,在保证语义信息的同时平衡模型准确性与检测速度;最后,设计一种跨层级特征融合机制,提高网络的检测精度.实验结果表明,改进后的模型的平均检测精度为78.5%,相较于原始YOLOv5算法提升了1.4%;模型计算量为10.9 GFLOPs,参数量为5.88×106,计算量和参数量分别降低31%和15.4%;检测速度为49 f/s,提升了3.5 f/s.因此,改进后的模型提高了检测精度和检测速度,并且大幅降低了模型的计算量和参数量,能够满足对带钢表面缺陷进行实时检测.  相似文献   

16.
为实现垃圾分选自动化,确保垃圾正确分类,提出了一种基于YOLOv4的轻量级垃圾检测算法.算法对YOLOv4中的主干网络CSPDarknet53,使用层级调整后的MobileNetV3网络进行替换,使得网络架构更适用于YOLOv4网络,并提升网络的检测速度;同时结合Ghost模块和MobileNeXt网络结构思想,设计了一种全新的bottleneck,用以替换主干网络中的bottleneck,以提升模型的检测精度;接着在主干网络中添加大残差边结构,以提升网络的检测精度;然后在颈部网络之前添加CA (coordinate attention)注意力机制,进一步提升网络的检测精度;最后为避免K-means算法在聚类过程中陷入局部极值,使用二分K-means算法对垃圾检测数据集进行anchor box的重新聚类.实验结果表明,重新设计的网络与YOLOv4网络的mAP值相近,但参数量减少了89%,检测速度提升了51%, FPS值达到了67.5 (on NVIDIA GeForce RTX 3060),可实现部署到算力和内存较低的嵌入式设备中.  相似文献   

17.
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3 × 3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号