共查询到18条相似文献,搜索用时 62 毫秒
1.
针对跨模态哈希检索方法中存在标签语义利用不充分,从而导致哈希码判别能力弱、检索精度低的问题,提出了一种语义相似性保持的判别式跨模态哈希方法.该方法将异构模态的特征数据投影到一个公共子空间,并结合多标签核判别分析方法将标签语义中的判别信息和潜在关联嵌入到公共子空间中;通过最小化公共子空间与哈希码之间的量化误差提高哈希码的判别能力;此外,利用标签构建语义相似性矩阵,并将语义相似性保留到所学的哈希码中,进一步提升哈希码的检索精度.在LabelMe、MIRFlickr-25k、NUS-WIDE三个基准数据集上进行了大量实验,其结果验证了该方法的有效性. 相似文献
2.
针对大多数跨模态哈希检索方法仅通过分解相似矩阵或标签矩阵,从而导致标签语义信息利用不充分、标签矩阵分解过程语义信息丢失以及哈希码鉴别能力差的问题,提出了一种语义嵌入重构的跨模态哈希检索方法。该方法首先通过最小化标签成对距离和哈希码成对距离之间的距离差,从而将标签矩阵的成对相似性嵌入哈希码;接着对标签矩阵分解并重构学得共同子空间,共同子空间再回归生成哈希码,从而将标签矩阵的类别信息嵌入哈希码,并有效地控制标签矩阵分解过程的语义信息丢失情况,进一步提高哈希码的鉴别能力。在公开的三个基准数据集上进行了多个实验,实验结果验证了该方法的有效性。 相似文献
3.
目的 基于哈希的跨模态检索方法因其检索速度快、消耗存储空间小等优势受到了广泛关注。但是由于这类算法大都将不同模态数据直接映射至共同的汉明空间,因此难以克服不同模态数据的特征表示及特征维度的较大差异性,也很难在汉明空间中同时保持原有数据的结构信息。针对上述问题,本文提出了耦合保持投影哈希跨模态检索算法。方法 为了解决跨模态数据间的异构性,先将不同模态的数据投影至各自子空间来减少模态“鸿沟”,并在子空间学习中引入图模型来保持数据间的结构一致性;为了构建不同模态之间的语义关联,再将子空间特征映射至汉明空间以得到一致的哈希码;最后引入类标约束来提升哈希码的判别性。结果 实验在3个数据集上与主流的方法进行了比较,在Wikipedia数据集中,相比于性能第2的算法,在任务图像检索文本(I to T)和任务文本检索图像(T to I)上的平均检索精度(mean average precision,mAP)值分别提升了6%和3%左右;在MIRFlickr数据集中,相比于性能第2的算法,优势分别为2%和5%左右;在Pascal Sentence数据集中,优势分别为10%和7%左右。结论 本文方法可适用于两个模态数据之间的相互检索任务,由于引入了耦合投影和图模型模块,有效提升了跨模态检索的精度。 相似文献
4.
由于不同模态数据之间的异构性以及语义鸿沟等特点,给跨模态数据分析带来巨大的挑战.本文提出了一个新颖的相似度保持跨模态哈希检索算法.利用模态内数据相似性结构使得模态内相似的数据具有相似的残差,从而保证学习到的哈希码能够保持模态内数据的局部结构.同时利用模态间数据的标签,使得来自于不同模态同时具有相同标签的数据对应的哈希码... 相似文献
5.
针对现阶段深度跨模态哈希检索算法无法较好地检索训练数据类别以外的数据及松弛哈希码离散化约束造成的次优解等问题,提出自适应深度跨模态增量哈希检索算法,保持训练数据的哈希码不变,直接学习新类别数据的哈希码。同时,将哈希码映射到潜在子空间中保持多模态数据之间的相似性和非相似性,并提出离散约束保持的跨模态优化算法来求解最优哈希码。此外,针对目前深度哈希算法缺乏有效的复杂度评估方法,提出基于神经网络神经元更新操作的复杂度分析方法,比较深度哈希算法的复杂度。公共数据集上的实验结果显示,所提算法的训练时间低于对比算法,同时检索精度高于对比算法。 相似文献
6.
针对大多数跨模态哈希方法采用二进制矩阵表示相关程度,因此无法捕获多标签数据之间更深层的语义信息,以及它们忽略了保持语义结构和数据特征的判别性等问题,提出了一种基于多级语义的判别式跨模态哈希检索算法——ML-SDH.所提算法使用多级语义相似度矩阵发现跨模态数据中的深层关联信息,同时利用平等指导跨模态哈希表示在语义结构和判... 相似文献
7.
基于哈希编码的无监督跨模态检索方法以其存储代价低、检索速度快、无需人工标注信息的优点受到了广泛的关注.最近的方法通过融合各模态的相似度信息构建联合模态相似度矩阵,用以指导哈希编码网络的学习.然而,这些方法未考虑数据特征空间的流形结构差异对相似度的影响而引入了噪声降低了模型的检索性能.本文提出了一种基于联合模态语义相似度修正的无监督跨模态哈希方法(JSSR),引入特征空间中的流形结构信息修正相似度矩阵中的噪声信息,同时增强语义相关样本的亲和力,使得生成的哈希码更具判别性和区分度.在典型的公开数据集NUS-WIDE和MIR Flickr上的实验结果表明,JSSR在跨模态检索精度上超越了现有的方法. 相似文献
8.
哈希检索具有存储消耗低、查询速度快等优点,被广泛应用于跨模态检索研究,其中基于深度学习的跨模态哈希方法是热点研究问题.大多数深度哈希方法通常在多模态数据的特征关联性学习过程中忽略了数据内容的潜在相关性和语义判别性,从而导致哈希码的关联性不强,容易造成原始数据特征和神经网络特征的不兼容问题.针对以上问题,本文提出一种图像... 相似文献
9.
哈希编码能够节省存储空间、提高检索效率,已引起广泛关注.提出一种成对相似度迁移哈希方法(pairwise similarity transferring hash,PSTH)用于无监督跨模态检索.对于每个模态,PSTH将可靠的模态内成对相似度迁移到汉明空间,使哈希编码继承原始空间的成对相似度,从而学习各模态数据对应的哈希编码;此外,PSTH重建相似度值而不是相似度关系,使得训练过程可以分批进行;与此同时,为缩小不同模态间的语义鸿沟,PSTH最大化模态间成对相似度.在三个公开数据集上进行了大量对比实验,PSTH取得了SOTA的效果. 相似文献
10.
跨模态哈希检索以其较高的检索效率和较低的存储成本,在跨模态检索领域受到了广泛的关注.现有的跨模态哈希大多直接从多模态数据中学习哈希码,不能充分利用数据的语义信息,因此无法保证数据低维特征在模态间的分布一致性,解决这个问题的关键之一是要准确地度量多模态数据之间的相似度.为此,提出一种基于对抗投影学习的哈希(adversa... 相似文献
11.
近年来,各种类型的媒体数据,如音频、文本、图像和视频,在互联网上呈现爆发式增长,不同类型的数据通常用于描述同一事件或主题。跨模态检索提供了一些有效的方法,可以为任何模态的给定查询搜索不同模态的语义相关结果,使用户能够获得有关事件/主题的更多信息,从而达到以一种模态数据检索另外一种模态数据的效果。随着数据检索需求以及各种新技术的发展,单一模态检索难以满足用户需求,研究者提出许多跨模态检索的技术来解决这个问题。梳理近期跨模态检索领域研究者的研究成果,简要分析传统的跨模态检索方法,着重介绍近五年研究者提出跨模态检索方法,并对其性能表现进行对比;总结现阶段跨模态检索研究过程中面临的问题,并对后续发展做出展望。 相似文献
12.
In the era of big data rich in We Media, the single mode retrieval system has been unable to meet people’s demand for information retrieval. This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes: A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network (CMHR-DRN). The model construction is divided into two stages: The first stage is the feature extraction of different modal data, including the use of Deep Residual Network (DRN) to extract the image features, using the method of combining TF-IDF with the full connection network to extract the text features, and the obtained image and text features used as the input of the second stage. In the second stage, the image and text features are mapped into Hash functions by supervised learning, and the image and text features are mapped to the common binary Hamming space. In the process of mapping, the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval. In training the model, adaptive moment estimation (Adam) is used to calculate the adaptive learning rate of each parameter, and the stochastic gradient descent (SGD) is calculated to obtain the minimum loss function. The whole training process is completed on Caffe deep learning framework. Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH, CMDN and CMSSH. 相似文献
13.
跨模态检索可以通过一种模态检索出其他模态的信息,已经成为大数据时代的研究热点。研究者基于实值表示和二进制表示两种方法来减小不同模态信息的语义差距并进行有效的相似度对比,但仍会有检索效率低或信息丢失的问题。目前,如何进一步提高检索效率和信息利用率是跨模态检索研究面临的关键挑战。介绍了跨模态检索研究中基于实值表示和二进制表示两种方法的发展现状;分析对比了包含两种表示技术下以建模技术和相似性对比为主线的五种跨模态检索方法:子空间学习、主题统计模型学习、深度学习、传统哈希和深度哈希;对最新的多模态数据集进行总结,为相关的研究和工程人员提供有价值的参考资料;分析了跨模态检索面临的挑战并指出了该领域未来研究方向。 相似文献
14.
跨模态散列可以将异构的多模态数据映射为语义相似度保持的紧凑二值码,为跨模态检索提供了极大的便利.现有的跨模态散列方法在利用类别标签时,通常使用2个不同的映射来表示散列码和类别标签之间的关系.为更好地捕捉散列码和语义标签之间的关系,提出一种基于双向线性回归的监督离散型跨模态散列方法.该方法仅使用一个稳定的映射矩阵来描述散列码与相应标签之间线性回归关系,提升了跨模态散列学习精度和稳定性.此外,该方法在学习用于生成新样本散列码的模态特定映射时,充分考虑了异构模态的特征分布与语义相似度的保持.在2个公开数据集上与现有方法的实验结果验证了该方法在各种跨模态检索场景下的优越性. 相似文献
15.
随着不同模态的数据在互联网中的飞速增长,跨模态检索逐渐成为了当今的一个热点研究问题.哈希检索因其快速、有效的特点,成为了大规模数据跨模态检索的主要方法之一.在众多图像-文本的深度跨模态检索算法中,设计的准则多为尽量使得图像的深度特征与对应文本的深度特征相似.但是此类方法将图像中的背景信息融入到特征学习中,降低了检索性能... 相似文献
16.
已有的无监督跨模态哈希(UCMH)方法主要关注构造相似矩阵和约束公共表征空间的结构,忽略了2个重要问题:一是它们为不同模态的数据提取独立的表征用以检索,没有考虑不同模态之间的信息互补;二是预提取特征的结构信息不完全适用于跨模态检索任务,可能会造成一些错误信息的迁移。针对第一个问题,提出一种多模态表征融合结构,通过对不同模态的嵌入特征进行融合,从而有效地综合来自不同模态的信息,提高哈希码的表达能力,同时引入跨模态生成机制,解决检索数据模态缺失的问题;针对第二个问题,提出一种相似矩阵动态调整策略,在训练过程中用学到的模态嵌入自适应地逐步优化相似矩阵,减轻预提取特征对原始数据集的偏见,使其更适应跨模态检索,并有效避免过拟合问题。基于常用数据集Flickr25k和NUS-WIDE进行实验,结果表明,通过该方法构建的模型在Flickr25k数据集上3种哈希位长检索的平均精度均值较DGCPN模型分别提高1.43%、1.82%和1.52%,在NUS-WIDE数据集上分别提高3.72%、3.77%和1.99%,验证了所提方法的有效性。 相似文献
17.
深度学习的快速发展和关联学习的深度研究,使得跨模态检索的性能有了很大提升.跨模态检索研究面临的挑战是:不同模态的数据在高层语义上具有关联关系,但在底层特征上存在异构鸿沟.现有方法主要通过单个相关性约束将不同模态的特征映射到具有一定相关性的特征空间中来解决底层特征上的异构鸿沟问题.然而,表征学习表明,不同层次的特征在帮助模型最终性能的提升上都会起作用.所以,现有方法学习到的单一特征空间的关联性是弱的,即该特征空间可能不是最优的检索空间.为解决该问题,提出了基于关联特征传播的跨模态检索模型,其基本思想是强化深度网络各层之间的关联性,即前一层具有一定关联的特征经过非线性变化传到后一层,有利于找到使2种模态关联性更强的特征空间.通过在Wikipedia,Pascal数据集上的大量实验验证得到,该方法提升了平均精度均值. 相似文献
18.
In recent years, the development of deep learning has further improved hash retrieval technology. Most of the existing hashing methods currently use Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to process image and text information, respectively. This makes images or texts subject to local constraints, and inherent label matching cannot capture fine-grained information, often leading to suboptimal results. Driven by the development of the transformer model, we propose a framework called ViT2CMH mainly based on the Vision Transformer to handle deep Cross-modal Hashing tasks rather than CNNs or RNNs. Specifically, we use a BERT network to extract text features and use the vision transformer as the image network of the model. Finally, the features are transformed into hash codes for efficient and fast retrieval. We conduct extensive experiments on Microsoft COCO (MS-COCO) and Flickr30K, comparing with baselines of some hashing methods and image-text matching methods, showing that our method has better performance. 相似文献