共查询到17条相似文献,搜索用时 78 毫秒
1.
针对当前移动机器人存在的全局未知环境路径规划的不足,提出一种将改进A*算法与动态窗口法进行融合的机器人路径规划方法,首先将传统A*算法8搜索邻域进行扩展至32邻域并去除同向多余子节点,其次使用三阶Bezar曲线将改进后32邻域A*算法进行平滑处理,降低机器人移动路径长度且轨迹更平滑,最后,将该A*算法与动态窗口法进行结... 相似文献
2.
针对移动机器人局部动态避障路径规划问题开展优化研究。基于动态障碍物当前历史位置轨迹,提出动态障碍物运动趋势预测算法。在移动机器人的动态避障路径规划过程中,考虑障碍物当前的位置,评估动态障碍物的移动轨迹;提出改进的D*Lite路径规划算法,大幅提升机器人动态避障算法的效率与安全性。搭建仿真验证环境,给出典型的单动态障碍物、多动态障碍物场景,对比验证了避障路径规划算法的有效性。 相似文献
3.
为满足AGV路径规划中路径的全局最优性和实时避障的需要,提出了一种基于改进A*算法+改进动态窗口法的融合算法。首先,基于传统A*算法,提出了一种基于障碍物类型的关键路径点提取策略,剔除冗余路径点,从而减少路径总转角,缩短全局路径长度;其次,根据提取的关键点计算贝塞尔曲线,生成一条符合机器人运动学的路径;最后,将改进A*算法与改进动态窗口法进行融合,将提取的关键路径点作为改进动态窗口法的过程目标点,并向动态窗口法的评价函数中加入全局路径代价函数,从而使融合算法同时具备全局路径最优性和动态避障能力。仿真实验结果表明:与传统A*算法相比,改进A*算法减少了52.8%的路径点,减少了5.8%的路径总转角,缩短了4.8%的全局路径总长度,而且基于改进A*算法的融合算法相较于基于传统A*算法的融合算法,效率提高了46.3%,能够很好的满足AGV路径规划的需要。最后并完成了实际场景下的运行实验验证。 相似文献
4.
在动态未知环境下对机器人进行路径规划,传统A*算法可能出现碰撞或者路径规划失败问题。为了满足移动机器人全局路径规划最优和实时避障的需求,提出一种改进A*算法与Morphin搜索树算法相结合的动态路径规划方法。首先通过改进A*算法减少路径规划过程中关键节点的选取,在规划出一条全局较优路径的同时对路径平滑处理。然后基于移动机器人传感器采集的局部信息,利用Morphin搜索树算法对全局路径进行动态的局部规划,确保更好的全局路径的基础上,实时避开障碍物行驶到目标点。MATLAB仿真实验结果表明,提出的动态路径规划方法在时间和路径上得到提升,在优化全局路径规划的基础上修正局部路径,实现动态避障提高机器人达到目标点的效率。 相似文献
5.
为解决传统A*算法和传统动态窗口法(Dynamic window approach,DWA)在移动机器人路径规划中存在的问题,提出一种改进A*算法和改进DWA相结合的动态路径规划方法。首先,采用16邻域16方向的路径搜索方式扩大路径搜索视野,减少节点访问量和转角度数;其次,对启发函数进行优化,增强路径搜索的目的性;接着,采用冗余点删除策略,减少转折点数目,路径平滑度进一步提高,再使用B样条曲线对路径拐角进行处理,得到的路径较为平滑;然后,在DWA的评价函数中对障碍物进行分类并区别对待以及添加速度自适应因子,能够提高避障灵敏度;最后,通过与其他算法进行三部分仿真实验以及优先级策略仿真实验,验证改进A*算法的有效性和融合方法避障的优越性。 相似文献
6.
为满足动态环境中移动机器人既要动态避障抵到终点,又要尽可能地做到全局最优的路径规划需求,提出了一种双层优化A*算法与动态窗口法相结合的移动机器人路径规划算法。在传统A*算法求得的全局路径轨迹基础上,首先通过一层全局优化,计算路径节点间斜率,提取关键转折点,大幅度减少路径转折点数量;再通过二层全局优化,延长路径段求得路径交点,判断交点是否通过障碍物的方法,将路径转折点数降到最低;设计动态窗口法的轨迹评价函数,解决了机器人容易陷入“凹”“C”形障碍物的问题,同时保证了障碍物安全距离并选取全局最优的路径轨迹。最后分别在静态与动态的二维栅格地图中对传统A*算法、一层优化A*、二层优化A*以及融合算法进行仿真实验。实验结果表明一层优化A*算法大幅度降低了转折次数;二层优化A*算法将转折点数降到最低,但是路径长度小幅度增加;融合算法实现了机器人实时动态避障抵到终点,而且在保证安全距离的同时更加贴近全局最优规划。 相似文献
7.
针对传统A*算法自身节点搜索策略存在路径转折点多、转折角度大、可行路径不是理论上的最优路径等缺点,将传统A*算法3×3的搜索邻域扩展为7×7,同时去除扩展邻域同方向的多余子节点,改进为7×7的A*算法,消除了传统A*算法的3×3邻域搜索和节点移动方向仅为0.25π的整数倍的限制,优化了搜索角度.其次,针对移动机器人在复... 相似文献
8.
A*算法通过启发信息指引搜索方向,被广泛应用于移动机器人的路径规划,但其规划出的搜索路径存在冗余节点且与障碍物相近,无法满足动态避障需求。对标准A*算法进行改进,设计安全A*算法并融合动态窗口法进行路径规划。定义安全距离因子引入A*算法的启发函数中,提高算法规划路径的安全性,同时采用平面结构法对算法规划得到的路径进行优化,根据相邻节点与障碍物之间的位置关系判断该相邻节点间是否存在障碍物,由此减少路径拐点数,提高路径平滑度。由于当移动机器人处于未知环境时,仅靠A*算法不能避开障碍物到达目标点,因此借助动态窗口法的局部避障功能。通过安全A*算法规划全局最优路径节点坐标,设计融合子函数改进动态窗口法的评价函数,解决动态窗口法易陷入局部最优的问题。实验结果表明,在复杂环境中,该方法通过融合安全A*算法和动态窗口法,能够确保在安全路径基础上实时随机避障,使机器人安全到达终点。 相似文献
9.
针对移动机器人在复杂环境下(包含静态和动态环境)的路径规划效率低的问题,提出了一种改进的A*算法与动态窗口法相结合的混合算法。针对传统A*算法安全性不足的问题,采用障碍规避策略,优化节点的选择方式,增加路径的安全性;针对转折点多的问题,采用递归二分法优化策略,去除冗余节点,减少转弯次数;针对静态环境下路径平滑性不足的问题,采用动态内切圆平滑策略将折线角优化成弧度角,以增加路径的平滑性。对于传统动态窗口法的目标点附近存在障碍物时规划效果不好和容易在凹型槽类障碍物中陷入局部最优的问题,在原有的评价函数中引入了距离偏差和轨迹偏差。最后,对所提的改进A*算法和混合算法分别在静态和动态环境下与其他算法进行仿真比较。从结果可以看出,与传统混合算法相比,临时障碍环境下,路径长度和运行时间分别缩短了13.2%和65.8%;移动障碍环境下,路径长度和运行时间分别缩短了13.9%和44.9%,所提的算法提高了在复杂环境中规划路径的效率。 相似文献
10.
传统的A*算法仅适用于全局的静态环境,在求解路径规划问题时存在搜索效率低,路径不平滑等不足.针对这些问题,进行了以下改进:优化全局路径节点,引入删除冗余点准则与新增节点准则,使得全局路径更加平滑,更符合机器人运动学规律;结合滚动窗口法的思想,在每个滚动窗口内进行局部路径规划,首先根据前一步的节点信息确定局部子目标区域,... 相似文献
11.
12.
13.
针对建筑机器人进入施工位置全局路径规划最优且可实时避障的要求,提出了一种新型的导航地图建立方法,通过建筑物BIM(Building Information Modeling)模型建立导航地图,通过优化A*算法搜索点选取策略,以及删除了路径上的冗余转折点,缩短算法运行时间,且规划出的全局路径不会紧贴着建筑物墙壁,有效降低了机器人与墙体发生碰撞的可能性。结合动态窗口算法进行局部路径规划,在全局路径关键点之间使用动态窗口法,且加入了新的刹车判定条件,使得机器人的运动连续化。实验结果表明改进后的A*算法运行时间相较于原始算法减少50%以上,每去除一个冗余转折点路径长度减少0.4?m,路径与障碍物之间的距离比原始算法增加了2倍,结合了动态窗口法之后能够较好地避开障碍且输出的控制参数连续化。 相似文献
14.
15.
针对全局静态路径规划算法无法有效躲避动态障碍物、局部动态路径规划算法缺少全局环境信息指导规划路径质量差或无法成功到达目标点等问题,提出了一种结合改进蚁群算法和动态窗口法的全局动态路径规划算法,实现在动态环境中的全局最优路径实时规划.对传统蚁群算法提出了初始信息素不均匀、双向分布、引入放大系数A增大相邻栅格启发信息差异、... 相似文献
16.
提出了一种改进的A*算法与动态窗口法相结合的混合算法,以解决移动机器人在多目标复杂环境中的路径规划问题.首要,为了提升算法的运行效率,实现单次规划的路径可通过多个目标点,同时提升路径平滑处理的灵活性并满足移动机器人非完整约束条件,本文利用目标成本函数对所有目标进行优先级判定,进而利用改进的A*算法规划一条经过多个目标点的最优路径,同时采用自适应圆弧优化算法与加权障碍物步长调节算法,有效地将路径长度缩短5%,转折角总度数降低26.62%.其次,为实现移动机器人在动态复杂环境中局部避障并追击动态目标点.提出将改进动态窗口算法与全局路径规划信息相结合的在线路径规划法,采用预瞄偏差角追踪法成功捕捉移动目标点,并提升了路径规划效率.最后,对所提方法进行仿真实验,结果表明该方法能够在复杂动态环境中更有效地实现路径规划. 相似文献
17.
针对二维动态场景下的移动机器人路径规划问题,提出了一种新颖的路径规划方法——连续动态运动基元(continuous dynamic movement primitives, CDMPs).该方法将传统的单一动态运动基元推广到连续动态运动基元,通过对演示运动轨迹的学习,获得各运动基元的权重序列,利用相位变量的更新,实现对未知动态目标的追踪.该方法克服了移动机器人对环境模型的依赖,解决了动态场景下追踪运动目标和躲避动态障碍物的路径规划问题.最后通过一系列仿真实验,验证了算法的可行性.仿真实验结果表明,对于动态场景下移动机器人路径规划问题, CDMPs算法比传统的DMPs方法在连续性能和规划效率上具有更好的表现. 相似文献