首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
针对海量视觉数据处理中的图像显著性检测问题,提出一种基于多重特征信息的新型方法。该方法首先根据像素的CIE Lab颜色空间和空间位置信息选用k-means算法对图像像素聚类,在初始化中心时根据蜂窝原理使用正六边形进行选种。然后用全局对比和局部对比方法分析选取的多重图像特征,并计算得到八种特征图。最后对八种特征图融合得到初始显著性图,再用阈值法得到最终的显著性图。该方法通过改进k-means算法实现良好的图像聚类以进一步分析、处理图像特征,并依据对比度、关键区域聚焦等重要原理将图像底层特征和中层特征合理融合,兼顾全局对比和局部对比,处理问题全面而高效。实验结果表明,从主观和客观两方面进行整体评估,该方法都达到了优越的性能。  相似文献   

2.
随着计算机视觉的发展,图像显著区域检测在图像处理领域越来越重要。为了对自然图像中的显著区域进行准确的检测,提出了一种基于区域对比的图像显著性检测方法。首先对图像进行超像素分割预处理,然后利用图像的颜色特征和空间特征算出区域对比度,再结合图像子区域与其邻域像素平均特征向量的距离以及中心优先原则得到图像高质量的显著图。仿真实验结果表明,与其他的显著性检测算法相比,可以更加有效地检测出显著性目标,更好地抑制背景。  相似文献   

3.
协同显著性检测指从一组相关图像集中识别出共同出现且显著的物体,其难点是如何挖掘与利用图像帧内、帧间的显著性线索.文中提出一种统一分级图神经网络的协同显著性检测方法.首先利用超像素分割算法将图像分割,并提取图像帧内分级显著性特征构建图模型;然后挖掘图像帧间分级显著性图嵌入,形成统一的二维分级特征体系;最后充分利用图像帧内和图像帧间的线索,提出几何注意力模块.在iCoSeg数据集上的消融实验结果表明,所提出的统一分级图神经网络中各个模块均是有效的;所提方法基于iCoSeg数据集测试的最大F-measure、平均绝对误差以及S-measure分别为0.848 6, 0.107 6和0.813 4,可以媲美或优于其他9种对比方法,最终获得的显著性图的高亮一致性和边缘均得到明显的改善.  相似文献   

4.
针对现有显著性检测方法得到的显著区域不完整以及缺乏生物学依据的不足,提出一种基于频域多尺度分析的图像显著性检测方法.首先利用小波变换将输入图像的离散余弦变换(DCT)系数的幅度谱进行多尺度分解,计算得到多尺度下的空间域视觉显著图,然后依据显著性评价函数选出较优显著图,最后以自适应权重合成输入场景的视觉显著图.对不同类型数据集进行实验,包括心理物理学模板数据集、人眼注视轨迹数据集及显著目标分割数据集(包括ASD和ECSSD数据集),该方法对于多类型数据集在P-R曲线、ROC曲线及AUC指标等客观评价标准上均取得较高精确度,且在计算速度统计中计算较快,表明该方法优于其他经典的显著性检测方法.  相似文献   

5.
于明  李博昭  于洋  刘依 《自动化学报》2019,45(3):577-592
针对现有图像显著性检测算法中显著目标检测不完整和显著目标内部不均匀的问题,本文提出了一种基于多图流形排序的图像显著性检测算法.该算法以超像素为节点构造KNN图(K nearest neighbor graph)模型和K正则图(K regular graph)模型,分别在两种图模型上利用流形排序算法计算超像素节点的显著性值,并将每个图模型中超像素节点的显著值加权融合得到最终的显著图.在公开的MSRA-10K、SED2和ECSSD三个数据集上,将本文提出的算法与当前流行的14种算法进行对比,实验结果显示本文算法能够完整地检测出显著目标,并且显著目标内部均匀光滑.  相似文献   

6.
目的 针对图像的显著区域检测问题,提出一种利用背景先验知识和多尺度分析的显著性检测算法。方法 首先,将原始图像在不同尺度下分解为超像素。然后,在每种尺度下根据各超像素之间的特征差异估计背景,提取背景区域,获取背景先验知识。根据背景先验计算各超像素的显著性,得到显著图。最后,将不同超像素尺度下的显著图进行融合得到最终显著图。结果 在公开的MASR-1000、ECSSD、SED和SOD数据集上进行实验验证,并和目前流行的算法进行实验对比。本文算法的准确率、召回率、F-Measure以及平均绝对误差均在4个数据集上的平均值分别为0.718 9、0.699 9、0.708 6和0.042 3,均优于当前流行的算法。结论 提出了一种新的显著性检测算法,对原始图像进行多尺度分析,利用背景先验计算视觉显著性。实验结果表明,本文算法能够完整、准确地检测显著性区域,适用于自然图像的显著性目标检测或目标分割应用。  相似文献   

7.
显著性目标检测在图像和视频压缩、伪装物体检测、医学图像分割等领域具有重要作用.随着深度传感器和光场技术的广泛应用,深度图像和光场数据等场景几何信息开始应用于显著性目标检测,可提升模型在复杂场景下的性能,由此学者们提出一系列基于场景几何信息的显著性目标检测方法.文中旨在分析总结经典的基于场景几何信息的显著性目标检测方法.首先,介绍方法的基本框架及评估标准.然后,围绕多模态特征融合、多模态信息优化、网络模型轻量化三方面,分类概述和分析经典的RGB-D显著性目标检测方法和光场显著性目标检测方法.同时,详细介绍基于场景几何信息的显著性目标检测方法的工作进展.最后,讨论方法目前存在的问题,展望未来的研究方向.  相似文献   

8.
为了能正确检测显著性图中的多个显著性目标, 提出了一种基于全局颜色对比的显著性目标检测算法。该算法首先提取图像的全局颜色对比度特征, 然后把显著性图和全局颜色对比度作为特征输入条件随机场框架中, 得到二值显著性掩模, 最后经区域描绘子计算得到包含显著性目标的最小外接矩形。在两种公开的数据集上的实验结果表明, 该算法在精度、召回率以及F-测度方面的表现优于现有其他几种算法, 在计算效率上也具有一定的优势。因此, 所提出的算法在检测效果上优于现有的显著性目标检测算法, 而且还能够检测到多个显著性目标。  相似文献   

9.
针对目前基于深度卷积神经网络的显著性检测算法存在对复杂场景图像目标检测不完整、背景噪声多的问题,提出一种深度特征导向显著性检测算法。该算法是基于现有底层特征与深度卷积特征融合模型(ELD)的改进,网络模型包含基础特征提取、高层语义特征跨层级引导传递两个部分。首先,根据不同层级卷积特征的差异性,构建跨层级特征联合的高层语义特征引导模型;然后,用改进的网络模型生成初始显著图,利用高层语义特征引导的方式进行显著性聚类传播;最后,用完全联系条件随机场对聚类传播的结果进行优化,使其能够获取更多结构边缘信息和降低噪声并生成完整显著图。在ECSSD上和DUT-ORMON两个数据集上进行实验测试,实验结果表明,所提算法的准确率和召回率(PR)优于ELD模型,其F-measure(F)值分别提升了7.5%和11%,平均绝对误差(MAE)值分别降低了16%和15%,说明了所提算法模型能够在目标识别、模式识别、图像索引等复杂图像场景应用领域得到更加鲁棒的结果。  相似文献   

10.
许肖  顾磊 《计算机科学》2016,43(4):313-317
针对复杂背景下的文本检测问题,提出了显著性检测与中心分割算法相结合的文本检测技术。对于输入的图像,首先分别使用前景与背景作为标准的显著性检测方法,背景检测时将图像的四边分别作为基准,前景检测时将背景检测中得到的非背景区域作为基准,最终可得到较准确的备选文本区。然后使用中心分割算法,得到精确的边缘图。由于显著性图备选区域准确边缘细节缺失,而边缘图边缘精确但无法得出备选文本区,因此将两者进行融合处理,得到最终文本区域。实验表明,所提出的方法有较好的检测效果。  相似文献   

11.
基于区域的几何活动轮廓(Chan-Vese,CV)模型是乳腺超声图像中常用的一种分割算法.但传统的CV模型不能满足乳腺超声图像分割精度高、速度快的要求.因此,文章提出了一种基于指数加权平均比率(Ratio of Exponential Weighted Averages,ROEWA)算子改进的CV模型,用于乳腺超声图像中病灶区域的分割.首先,计算乳腺超声图像的ROEWA算子.其次,基于图像的ROEWA算子构建边缘指示函数,用于代替CV模型中的Dirac项.最后,去除平滑项,从而提高曲线演化的速度.实验结果表明,文章提出的算法不仅能提高分割的精度,而且能显著提高分割的速度.  相似文献   

12.
乳腺超声图像具有肿瘤大小形态多变、阴影较多、边界模糊等特点,经典U-Net的乳腺肿瘤分割结果与标注图像出入较大。对此,提出改进网络MultiMixU-Net。该网络在U-Net结构中引入MultiMix block以及Respath。MultiMix block通过空洞卷积通路提高网络区分目标以及背景的能力,并通过级联该通路中各卷积层输出,融合普通卷积通路的输出来提取多尺度特征信息。Respath的改进部署使网络中收缩路径与扩张路径之间对应特征信息的传递更加有效。该改进网络在公开的超声乳腺肿瘤分割数据集上进行了测试,实验表明,MultiMixU-Net分割结果优于其他网络且参数量较少。相较于U-Net,所提网络分割结果在所有评价指标上均有提升,其中IoU、DSC分别提升0.154 1、0.127 3。  相似文献   

13.
提出了一种利用人类视觉机制进行图像融合的算法。首先对源图像进行金字塔分解;接着对低频和高频分量采用不同的融合策略,低频分量依据最大显著性准则选择融合像素,高频分量利用相关性加权准则选择融合像素。初步融合后的低频和高频分量经金字塔重建获得最终融合结果。金字塔变换可提供多分辨率的图像表示,但不区分图像区域的重要性;而视觉显著性检测可定位图像最显著区域,但对噪声敏感;两算法的结合能取长补短,获得好的融合结果。实验表明,提出的方法优于已发表的其他基于金字塔变换的图像融合算法,适用于多聚焦图像、多波段图像和多光谱图像融合。  相似文献   

14.
一种基于随机场模型的高光谱影像目标探测算法   总被引:1,自引:0,他引:1  
利用随机场模型来描述像元的邻域相关性信息,利用这种相关性缩小待探测区域,然后将这种邻域信息引入到局域异常探测器中,提出了一种利用随机场模型引入能量函数和邻域信息的高光谱遥感影像局域异常目标探测算法.实验证明,该方法将光谱信息与空间信,包相结合,不但比传统算法的探测率更高,且可以更有效地探测出较大的异常目标,探测速度更快.  相似文献   

15.
当今时代,乳腺癌越来越成为了女性的高发病,因此尽早地排除异常因素,进行对症治疗,可以大大降低疾病风险.考虑到乳腺癌数据特征比较多,并且往往不仅存在线性特征还隐含着很多非线性特征,针对这一问题提出利用核零空间算法来进行乳腺癌的异常检测.首先利用核函数将所有的正常样本进行非线性映射变换到高维空间,再通过零空间变换将类内散度...  相似文献   

16.
提出了一种新颖的视频显著性检测方法。为了提取视频序列中具有高置信度的特征,根据输入帧和输入帧的初始显著图提出一种简单帧选择标准,并使用该简单选择标准挑选出视频序列中比较容易且准确提取前景对象的帧,从简单帧中获得鲁棒的前景背景标签;将图像进行超像素分割,提取时空特征与前景标签输入集成学习模型,经过多核SVM集成学习,最终生成像素级别的显著图,并且由运动特征扩散到整个视频集。各种视频序列的实验结果表明,该算法在定性和定量上优于传统的显着性检测算法。  相似文献   

17.
针对单独使用像素级变化检测或特征级变化检测对于高层建筑物检测精度低的问题,提出了一种结合像素级和特征级的建筑物变化检测方法。首先对多个时相的遥感图像进行基于比值法的像素级变化检测,得到包含建筑物变化的候选区域,在候选区域上再进行基于建筑物特征的变化检测。该方法首先利用基于Delaunay三角网约束的快速配准算法配准两个不同时相的多光谱图像,利用建筑物的变化会导致建筑物所在局部区域的纹理分布和色调发生变化的特点,提取对辐射差异和配准误差鲁棒的纹理和色调特征进行变化检测。实验结果表明,该方法可以有效提高建筑物变化检测正确率,降低虚检率。  相似文献   

18.
显著性检测是指计算机通过算法自动识别出图像中的显著性目标,广泛应用于目标识别、图像检索与图像分类等领域。针对现有基于稀疏与低秩矩阵恢复的显著性检测模型中低秩转换矩阵的获取、前景稀疏矩阵的处理以及超像素块之间的关系,需对现有的稀疏与低秩矩阵恢复模型进行优化,使之更好地适用于图像的显著性检测。首先,根据背景的对比度和连通度原则获取图像低秩的背景字典,采用3种尺度分割图像的多个特征矩阵获得图像的前景稀疏矩阵;其次,通过计算邻居像素点之间的影响因子矩阵与置信度矩阵对显著图的结果进行结构约束,并且采用稀疏与低秩矩阵恢复模型对图像进行显著性检测;最后,利用K-means聚类算法的传播机制优化得到的显著图。在公开数据集上进行实验验证,结果证明本文方法能够准确有效地检测出显著性目标。  相似文献   

19.
The harmful presence of cancerous cells in the feminine breast brings as a result, breast cancer, illness that has spread widely lately, not only in Mexico, but in other parts of the planet. In this paper, we present a method of automatic breast cancer classification, in which a Raman signal is classified as coming from a biopsy of healthy tissue (class ω1) or biopsy of diseased tissue (class ω2); to do so, we created patterns from Raman spectra accurately measuring each Raman peak to provide naturally reduced data to a classifier; we used ANFIS (adaptative neuro-fuzzy inference system) classifier and high rates of correct classification were obtained. This provides the specialists with important clinical tools for a rapid and efficient automatic detection of breast cancer. We consider that our approach can be applicable to other kinds of cancer, e.g., lung, prostate, and stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号