共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
针对自然纹理背景,提出一种基于多尺度小波特征融合的人造目标检测方法。在小波变换域,纹理背景和目标区域的多级小波系数具有不同的能量分布,能量特征可作为简单、有效的空间特征来检测目标。由于小波函数具有良好的局域性特点,不同尺度下用它检测出的边缘特征点移位不会超过1个像素。融合边缘特征和能量特征进行人造目标检测,可有效地保证目标边界的定位精度,达到较好的鲁棒性和准确性。实验结果证明,该方法对纹理背景下人造目标面积探测的误差率小于5%,目标探测概率大于94.1%。 相似文献
5.
In the era of Big data, learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system (IDS). Owing to the lack of accurately labeled network traffic data, many unsupervised feature representation learning models have been proposed with state-of-the-art performance. Yet, these models fail to consider the classification error while learning the feature representation. Intuitively, the learnt feature representation may degrade the performance of the classification task. For the first time in the field of intrusion detection, this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder (DAE) for learning the robust feature representation and one-class support vector machine (OCSVM) for finding the more compact decision hyperplane for intrusion detection. Specially, the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously. This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection. Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model. First, the ablation evaluation on benchmark dataset, NSL-KDD validates the design decision of the proposed model. Next, the performance evaluation on recent intrusion dataset, UNSW-NB15 signifies the stable performance of the proposed model. Finally, the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods. 相似文献
6.
目的为了更直观、有效地评估游戏产品的用户体验(User Experience,UX),消除单一评估标准的不确定性。方法从传统的MDA游戏设计的角度出发,引入用户的生理特征测量,构建基于动态贝叶斯网络(Dynamic Bayesian Network,DBN)的用户体验评估模型。该模型通过MDAUX框架提取用户体验影响因子,作为贝叶斯网络的输入层节点,通过生理特征测量方法提取用户的脑电和眼动状态,作为贝叶斯网络输出层节点,以一阶隐马尔可夫模型(Hidden Markov Model,HMM)表示两个相邻时间片上用户体验元素的影响关系,从而动态地展示用户体验状态。结果通过生理特征测量实验验证该模型的可行性,通过建立知识平台实践了模型的应用。结论结合生理特征测量的用户体验评估模型可有效反映用户体验状态。 相似文献
7.
基于线性局部切空间排列维数化简的故障诊断 总被引:5,自引:2,他引:3
为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregression,AR)模型系数构造全面表征不同故障特性的混合域特征集,再利用LLTSA将高维混合域特征集化简为故障区分度更好的低维特征矢量,并输入到最近邻分类器(K-nearest Neighbors Classifier,KNNC)中进行故障模式识别。所提出的诊断模型充分融合混合域特征融合在故障特征的全面提取、LLTSA在信息的有效化简及KNNC在分类决策方面的优势,实现诊断方法的自动化、高识别率及较好的通用性。用深沟球轴承不同部位、不同程度故障诊断实例验证该模型的有效性。 相似文献
8.
目前,面向我国金融支付的说话人识别技术在社会层面上没有大范围的推广,其原因在于数据集的缺乏以及识别技术未能满足安全性要求。针对上述问题,文章录制了用于中文数字串文本相关说话人识别的SHALCAS-WXSD22B数据集,用于金融支付场景中的数字串声纹识别研究,并提出一种基于迁移学习和基频特征融合的文本相关说话人识别框架,提高了文本相关说话人识别技术的可靠性。在数字串SHALCAS-WXSD22B-d006和SHALCAS-WXSD22B-d007语料实验中,所提框架实现的最佳等错误率分别为0.88%和1.05%,与ECAPA-TDNN基线模型相比等错误率相对降低了17和20个百分点,且达到了支付场景下的声纹识别安全性指标。实验结果表明,文中所提框架不仅具有更好的识别准确率和安全性能,而且同样能提高框架中包括ResNet34在内的其他log-Mel识别模型的性能。 相似文献
9.
P. Thirumurugan D. Ramkumar K. Batri D. Siva Sundhara Raja 《International journal of imaging systems and technology》2016,26(2):151-156
This article proposes a novel and efficient methodology for the detection of Glioblastoma tumor in brain MRI images. The proposed method consists of the following stages as preprocessing, Non‐subsampled Contourlet transform (NSCT), feature extraction and Adaptive neuro fuzzy inference system classification. Euclidean direction algorithm is used to remove the impulse noise from the brain image during image acquisition process. NSCT decomposes the denoised brain image into approximation bands and high frequency bands. The features mean, standard deviation and energy are computed for the extracted coefficients and given to the input of the classifier. The classifier classifies the brain MRI image into normal or Glioblastoma tumor image based on the feature set. The proposed system achieves 99.8% sensitivity, 99.7% specificity, and 99.8% accuracy with respect to the ground truth images available in the dataset. 相似文献
10.
Abderrahmane Saidi Abdelmouneim Moulay Lakhdar Mohammed Beladgham 《计算机、材料和连续体(英文)》2021,66(3):2875-2889
11.
Aim to countermeasure the presentation attack for iris recognition system, an iris liveness detection scheme based on batch normalized convolutional neural network (BNCNN) is proposed to improve the reliability of the iris authentication system. The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris, including convolutional layer, batch-normalized (BN) layer, Relu layer, pooling layer and full connected layer. The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels, and then the iris features are extracted by BNCNN. With these features, the genuine iris and fake iris are determined by the decision-making layer. Batch normalization technique is used in BNCNN to avoid the problem of over fitting and gradient disappearing during training. Extensive experiments are conducted on three classical databases: the CASIA Iris Lamp database, the CASIA Iris Syn database and Ndcontact database. The results show that the proposed method can effectively extract micro texture features of the iris, and achieve higher detection accuracy compared with some typical iris liveness detection methods. 相似文献
12.
R. Anitha D. Siva Sundhara Raja 《International journal of imaging systems and technology》2017,27(4):354-360
The abnormal development of cells in brain leads to the formation of tumors in brain. In this article, image fusion based brain tumor detection and segmentation methodology is proposed using convolutional neural networks (CNN). This proposed methodology consists of image fusion, feature extraction, classification, and segmentation. Discrete wavelet transform (DWT) is used for image fusion and enhanced brain image is obtained by fusing the coefficients of the DWT transform. Further, Grey Level Co‐occurrence Matrix features are extracted and fed to the CNN classifier for glioma image classifications. Then, morphological operations with closing and opening functions are used to segment the tumor region in classified glioma brain image. 相似文献
13.
P. Shanthakumar P. Ganesh Kumar 《International journal of imaging systems and technology》2015,25(4):297-301
Magnetic Resonance Imaging (MRI) is an advanced medical imaging technique that has proven to be an effective tool in the study of the human brain. In this article, the brain tumor is detected using the following stages: enhancement stage, anisotropic filtering, feature extraction, and classification. Histogram equalization is used in enhancement stage, gray level co‐occurrence matrix and wavelets are used as features and these extracted features are trained and classified using Support Vector Machine (SVM) classifier. The tumor region is detected using morphological operations. The performance of the proposed algorithm is analyzed in terms of sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). The proposed system achieved 0.95% of sensitivity rate, 0.96% of specificity rate, 0.94% of accuracy rate, 0.78% of PPV, and 0.87% of NPV, respectively. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 297–301, 2015 相似文献
14.
15.
改进的AdaBoost人脸检测方法 总被引:3,自引:0,他引:3
针对传统AdaBoost算法检测速度快准确率低的问题,本文提出了一种改进的AdaBoost算法以提高人脸的正确检测率,该算法首先利用快速积分图提取人脸的Haar特征,然后使用阈值设定的方法对传统的AdaBoost算法进行改进,并将每次检测的最优弱分类器级联形成最终的强分类器,通过强弱分类器对Haar特征判别,从而检测图像中的人脸部分.采用本方法对多种实验图像集进行人脸检测实验,FERET彩色图像库的正确检测率为96.07%,视频图像的正确检测率为96%.实验结果表明,本文所设计的人脸检测算法能够对静态图像以及视频图像中的人脸进行有效检测,为人脸的正确识别打下了基础,该算法也为计算机视觉领域的研究提供一种有效方法. 相似文献
16.
17.
18.
针对多目标的检测,本文提出一种采用多源图像分形特征的特征级融合检测方法.首先对多目标检测的特点进行了分析,对分形理论进行了介绍,然后详细介绍了该融合检测算法的思路和原理.该算法首先由红外图像阈值分割出部分目标;然后利用分维数图的统计特征可以增强分形维数的奇异性,在可见光图像的分维数图中搜索与已检测出的目标区域具有相近分形统计特征的区域,进行标记;再根据"距离相似度准则"进行目标的聚类识别,排除背景干扰,最终检测出全部目标.实验结果表明该融合检测算法能有效地进行多目标的检测与识别. 相似文献
19.
20.
Safety-critical software systems such as certain nuclear instrumentation and control (NI&C) systems should be developed with thorough verification. This study presents a method of software requirement verification with a case study for a nuclear power plant (NPP) protection system. The verification introduces colored petri net (CPN) for system modeling and prototype verification system (PVS) for mathematical verification. In order to aid flow-through from modeling by CPN to mathematical proof by PVS, an information extractor from CPN models has been developed in this paper. In order to convert the extracted information to the PVS specification language, a translator has also been developed. This combined method has been applied to the functional requirements of the Wolsong NPP Shut Down System #2 (SDS2); logical properties of the requirements were verified. Through this research, guidelines and a tool support for the use of formal methods have been developed for application to NI&C software verification. 相似文献