首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article introduces a novel, ultrawideband (UWB) planar monopole antenna printed on Roger RT/5880 substrate in a compact size for small Internet of Things (IoT) applications. The total electrical dimensions of the proposed compact UWB antenna are 0.19 λo × 0.215 λo × 0.0196 λo with the overall physical sizes of 15 mm × 17 mm × 1.548 mm at the lower resonance frequency of 3.8 GHz. The planar monopole antenna is fed through the linearly tapered microstrip line on a partially structured ground plane to achieve optimum impedance matching for UWB operation. The proposed compact UWB antenna has an operation bandwidth of 9.53 GHz from 3.026 GHz up to 12.556 GHz at −10 dB return loss with a fractional bandwidth (FBW) of about 122%. The numerically computed and experimentally measured results agree well in between. A detailed time-domain analysis is additionally accomplished to verify the radiation efficiency of the proposed antenna design for the ultra-wideband signal propagation. The fabricated prototype of a compact UWB antenna exhibits an omnidirectional radiation pattern with the low peak measured gain required of 2.55 dBi at 10 GHz and promising radiation efficiency of 90%. The proposed compact planar antenna has technical potential to be utilized in UWB and IoT applications.  相似文献   

2.
多输入多输出(Multiple-InputMultiple-Output,MIMO)技术是现代通信技术的发展趋势,为移动通信的迅速更迭提供了极大支持.设计了一种二端口的超宽带MIMO天线,其-10 dB阻抗带宽从3.3 GHz扩展到9.1 GHz.通过在天线接地板上蚀刻一条宽缝隙,并在其中添加音叉型枝节,改善了超宽带M...  相似文献   

3.
设计了一种应用于WLAN的具有低交叉极化和高隔离度的双极化天线.天线由3层功能层和2层介质基板间隔层叠而成.3层功能层分别为1个方形辐射贴片,2个带有发夹谐振器的馈电网络和1个刻蚀H形缝隙的接地板.发夹谐振器和辐射贴片构成一个二阶滤波天线用以展宽天线的带宽.通过在接地板上蚀刻H形缝隙降低了天线端口间的耦合电流,改善了天...  相似文献   

4.
A compact wideband printed slot antenna, suitable for wireless local area network (WLAN) and satisfying the worldwide interoperability for microwave access (WiMAX) applications, is proposed here. The antenna is microstrip-fed and its structure is based on Koch fractal geometry where the resonance frequency of a conventional triangular slot antenna is lowered by applying Koch iterations. The antenna size inclusive of the ground plane is compact and has a wide operating bandwidth. The proposed second iteration Koch slot antenna operates from 2.33 to 6.19 GHz covering the 2.4/5.2/5.8 GHz WLAN bands and 2.5/3.5/5.5 GHz WiMAX bands. The antenna exhibits omnidirectional radiation coverage with a gain better than 2.0 dBi in the entire operating band. Design equations for the proposed antenna are developed and their validity is confirmed on different substrates and for different slot sizes.  相似文献   

5.
A simple and compact coplanar waveguide (CPW)-fed ultra-wideband (UWB) monopole-like slot antenna is presented. The proposed antenna comprises a monopole-like slot and a CPW fork-shaped feeding structure, which is etched onto an FR4 printed circuit board (PCB) with an overall size of 26 mm x 29 mm x 1.5 mm. The simulation and experiment show that the proposed antenna achieves good impedance matching, consistent gain, stable radiation patterns and consistent group delay over an operating bandwidth of 2.7?12.4 GHz (128.5%). Furthermore, through adding two more grounded open-circuited stubs, the proposed antenna design features band-notched characteristic in the band of 5?6 GHz while maintaining the desirable performance over lower/upper UWB bands of 3.1?4.85 GHz/6.2?9.7 GHz.  相似文献   

6.
Ultra-wideband (UWB) is highly preferred for short distance communication. As a result of this significance, this project targets the design of a compact UWB antennas. This paper describes a printed UWB rhombus-shaped antenna with a partial ground plane. To achieve wideband response, two stubs and a notch are incorporated at both sides of the rhombus design and ground plane respectively. To excite the antenna, a simple microstrip feed line is employed. The suggested antenna is built on a 1.6 mm thick FR4 substrate. The proposed design is very compact with overall electrical size of 0.18λ × 0.25λ (14 × 18 mm2). The rhombus shaped antenna covers frequency ranging from 3.5 to 11 GHz with 7.5 GHz impedance bandwidth. The proposed design simulated and measured bandwidths are 83.33% and 80%, respectively. Radiation pattern in terms of E-field and H-field are discussed at 4, 5.5 and 10 GHz respectively. The proposed design has 65% radiation efficiency and 1.5 dBi peak gain. The proposed design is simulated in CST (Computer Simulation Technology) simulator and the simulated design is fabricated for the measured results. The simulated and measured findings are in close resemblance. The obtained results confirm the application of the proposed design for the ultra-wide band applications.  相似文献   

7.
Metamaterials (MTM) can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice. Note that the antenna is the element for realizing a microwave imaging (MWI) system since it is where signal transmission and absorption occur. Ultra-Wideband (UWB) antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna. The lack of conventional head imaging techniques, for instance, Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT)-scan, has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems. Furthermore, the importance of MWI has been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis. Other than that, MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reasonings. This paper proposes the novel design of a Zeroindex Split Ring Resonator (SRR) MTM element superstrate with a UWB antenna implemented in MWI systems for detecting tumor. The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB. Besides that, the MTM imitates the conduct of the zeroreflection phase on the resonance frequency, which does not exist. An antenna with an MTM unit is of a 7 × 4 and 10 × 5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna. Apart from that, Rogers (RT5880) substrate material is employed to fabricate the designed MTM unit cell, with the following characteristics: 0.51 mm thickness, the loss tangent of 0.02, as well as the relative permittivity of 2.2, with Computer Simulation Technology (CST) performing the simulation and design. Both MTM unit cells of 7 × 4 and 10 × 5 attained 0° with respect to the reflection phase at the 2.70 GHz frequency band. The first design, MTM Antenna Design 1, consists of a 7 × 4 MTM unit cell that observed a rise of 5.70 dB with a return loss (S11) −20.007dB at 2.70 GHz frequency. The second design, MTM Antenna Design 2, consists of 10 × 5 MTM unit cells that recorded a gain of 5.66 dB, having the return loss (S11) −19.734 dB at 2.70 GHz frequency. Comparing these two MTM elements superstrates with the antenna, one can notice that the 7 × 4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10 × 5 MTM element in realizing MTM element superstrates antenna for MWI.  相似文献   

8.
本文设计了一种T型枝节解耦的双频MIMO天线.两个工作频段分别覆盖WLAN频率2.45 GHz/5.2 GHz/5.8 GHz.低频谐振单元为倒F天线,通过在低频枝节上增加短截线,用以产生高频谐振,实现双频工作.将天线单元沿水平方向对称放置形成二单元的MIMO天线,并采用在两个天线单元之间添加T型枝节的方法进行解耦.对...  相似文献   

9.
Due to rapid growth in wireless communication technology, higher bandwidth requirement for advance telecommunication systems, capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired. In this paper, a compact Ultra-Wideband (UWB) V-shaped monopole antenna is presented. UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape. The proposed V-shaped is designed by incorporating a rectangle, and an inverted isosceles triangle using FR4 substrate. The size of the antenna is 25 mm×26 mm×1.6 mm. The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial, Scientific, and Medical (ISM), Worldwide Interoperability for Microwave Access (WiMAX), (IEEE 802.11/HIPERLAN band, 5G sub 6 GHz) which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission (FCC) with a maximum gain of 3.83 dB. The antenna is designed in Ansys HFSS. Results for key performance parameters of the antenna are presented. The measured results are in good agreement with the simulated results. Due to flat gain, uniform group delay, omni directional radiation pattern characteristics and well-matched impedance, the proposed antenna is suitable for WiMAX, ISM and heterogeneous wireless systems.  相似文献   

10.
A novel aperture-coupled, asymmetrical C-shaped slot, square microstrip antenna is proposed for circular polarisation (CP). A narrow and asymmetrical C-shaped slot, microstrip antenna is fed at the centre using an aperture coupling to obtain a CP operation. The compactness of the antenna is easily obtained by inserting a C-shaped slot. Wide CP radiation is achieved simply by making the C-shaped slot asymmetrical. With this antenna, the measured 3 dB AR bandwidth is around 3.3% and the 10 dB return loss bandwidth achieved is 16.0%. The overall antenna size is 0.48λo x 0.48λo x 0.092λo at 2.4 GHz. The proposed slot microstrip patch technology is useful to design compact, broadband, circularly polarised antennas and arrays.  相似文献   

11.
In this paper, a low cost, highly efficient and low profile monopole antenna for ultra-wideband (UWB) applications is presented. A new inverted triangular-shape structure possessing meander lines is designed to achieve a wideband response and high efficiency. To design the proposed structure, three steps are utilized to achieve an UWB response. The bandwidth of the proposed antenna is improved with changing meander lines parameters, miniaturization of the ground width and optimization of the feeding line. The measured and simulated frequency band ranges from 3.2 to 12 GHz, while the radiation patterns are measured at 4, 5.3, 6 and 8 GHz frequency bands. The overall volume of the proposed antenna is 26 × 25 × 1.6 mm3 ; whereas the FR4 material is used as a substrate with a relative permittivity and loss tangent of 4.3 and 0.025, correspondingly. The peak gain of 4 dB is achieved with a radiation efficiency of 80 to 98% for the entire wideband. Design modelling of proposed antenna is performed in ANSYS HFSS 13 software. A decent consistency between the simulated and measured results is accomplished which shows that the proposed antenna is a potential candidate for the UWB applications.  相似文献   

12.
In this paper, a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure (DGS) is investigated as the principle radiating element of an antenna. The unit cell antenna causes even or odd mode resonances similar to the unit cell structure depending on the orientation of the microstrip feed used to excite the unit cell. However, the orientation which gives low-frequency resonance is considered here. The unit cell antenna is then loaded with a meander line which is parallel to the split bearing side and connects the other two sides orthogonal to the split bearing side. This modified structure excites another mode of resonance at high frequency when a meander line defect is loaded on the metallic ground plane. Specific parameters of the meander line structure, the DGS shape, and the unit cell are optimized to place these two resonances at different frequencies with proper frequency intervals to enhance the bandwidth. Finally, the feed is placed in an offset position for better impedance matching without affecting the bandwidth The compact dimension of the antenna is 0.25 λL × 0.23 λL × 0.02 λL, where λL is the free space wavelength with respect to the center frequency of the impedance bandwidth. The proposed antenna is fabricated and measured. Experimental results reveal that the modified design gives monopole like radiation patterns which achieves a fractional operating bandwidth of 26.6%, from 3.26 to 4.26 GHz for |S11|<−10 dB and a pick gain of 1.26 dBi is realized. In addition, the simulated and measured cross-polarization levels are both less than −15 dB in the horizontal plane.  相似文献   

13.
A simple dual-band microstrip-fed printed antenna for WLAN applications   总被引:1,自引:0,他引:1  
A novel microstrip-fed dual-band printed antenna for wireless local area network (WLAN) is presented. The antenna comprises a rectangular and a circular radiating element, which generate two resonant modes to cover 2.4/5.2/5.8 GHz WLAN bands. The design was experimentally verified by constructing the antenna on a FR4 (ϵr = 4.4) dielectric substrate (47 mm x 26 mm x 0.76 mm) and measuring its impedance and radiation characteristics at both the bands. The measured 10 dB return loss (VSWR 2:1) bandwidth in the 2.4G Hz band is 550 MHz (2.1?2.65 GHz) and it covers the bandwidth required for 2.4 GHz WLAN. The 5.2/5.8 GHz resonant mode has a bandwidth of 950 MHz (5.15?6.1 GHz) covering 5.2/5.8 GHz WLAN bands. A rigorous experimental evaluation confirmed that the dual-band printed antenna maintained good radiation characteristics with minimum cross-polarisation levels.  相似文献   

14.
In this study, a compact 2 × 2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications. The array is composed of a novel unit elements that are made of rectangular dielectric resonator (RDR) coupled to an eye slot for generating the orthogonal modes, and to acquire circular polarization (CP) radiation. For the purpose of miniaturization and achieving dual polarized resonance, the array is fed by two interlaced ports and each port excites two radiating elements. The first port feeds horizontal elements to obtain left hand circular polarization (LHCP). The second port feeds vertical elements to obtain right hand circular polarization (RHCP). A quarter-wave length transformer is employed to reduce the attenuation and consequently increase the array gain performance. The 35 × 35 mm2 () gains were 8.4 and 8.2 dBi for port 1 and port 2, respectively, with port isolations of −33.51 dB. The design achieves a voltage standing-wave ratio (VSWR) < −10 dB and an axial ratio (AR) ˂ − 3 dB bandwidth of 2.48% (5.766 to 5.911 GHz) for LHCP at port 1 and a VSWR < −10 dB and AR ˂ −3 dB bandwidth of 2.28% (5.788 to 5.922 GHz) for RHCP at port 2. The findings of the proposed design validate its use for ISM band applications.  相似文献   

15.
An ultra wideband coplanar waveguide (CPW) fed slot antenna is presented. A rectangular slot antenna is excited by a 50-CPW with an arc-shaped tuning stub. For the proposed antenna, the 210 dB return loss bandwidth could reach 15.6 GHz (3.7-19.3 GHz), which is about 135% with respect to the centre frequency of 11.5 GHz. Details of the antenna design, simulation and measured results on the return loss and the E-and H-plane radiation patterns of the proposed antenna are presented.  相似文献   

16.
In this paper, we present a novel modified printed monopole antenna (PMA) for ultra-wideband (UWB) applications. The proposed antenna consists of a truncated ground plane and radiating patch with two tapered steps, which provides wideband behaviour and relatively good matching. Moreover, the effects of a modified trapezoid-shaped slot inserted in the radiating patch, on the impedance matching and radiation behaviour is investigated. The antenna has a small area of 14 x 20 mm2 and offers an impedance bandwidth as high as 100% at a centre frequency of 7.45 GHz for S11 < -10 dB, which has a frequency bandwidth increment of 18% with respect to the previous similar antenna. Simulated and experimental results obtained for this antenna show that it exhibits good radiation behaviour within the UWB frequency range.  相似文献   

17.
A multilayer inphase power divider with an ultra wideband behaviour is presented. The proposed divider exploits broadside coupling via a multilayer microstrip/slot configuration. The design method utilised for the device is based on the conformal mapping techniques. The developed device has a compact size with an overall dimension of 20 mm x 30 mm. The simulated and measured results show that the proposed device has equal power division between the two output ports with <0.2 dB amplitude imbalance between them, better than 10 dB return loss and isolation and < 2degrees phase difference between the two output signals across the frequency band 3.1-10.6 GHz.  相似文献   

18.
共面波导和分形结构结合应用,在展宽天线带宽方面具有独特优势.提出了一种新型古币形超宽带分形天线,采用共面波导馈电,并加载分形缝隙,天线的阻抗带宽大幅提高.给出了天线的表面电流、回波损耗、方向图和增益结果.对3阶分形天线进行了加工与测试,测试结果表明,天线带宽达到2.6~16 GHz,带宽比大于6:1.仿真结果与测试结果基本吻合,为超宽带小型化天线的设计提供了新的思路.  相似文献   

19.
In this paper, the design and performance analysis of an Inkjet-printed metamaterial loaded monopole antenna is presented for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. The proposed metamaterial structure consists of two layers, one is rectangular tuning fork-shaped antenna, and another layer is an inkjet-printed metamaterial superstate. The metamaterial layer is designed using four split-ring resonators (SRR) with an H-shaped inner structure to achieve negative-index metamaterial properties. The metamaterial structure is fabricated on low-cost photo paper substrate material using a conductive ink-based inkjet printing technique, which achieved dual negative refractive index bands of 2.25–4.25 GHz and 4.3–4.6 GHz. The antenna is designed using a rectangular tuning fork structure to operate at WLAN and WiMAX bands. The antenna is printed on 30 × 39 × 1.27 mm3 Rogers RO3010 substrate, which shows wide impedance bandwidth of 0.75 GHz (2.2 to 2.95 GHz) with 2 dB realized gain at 2.4 GHz. After integrating metamaterial structure, the impedance bandwidth becomes 1.25 GHz (2.33 to 3.58 GHz) with 2.6 dB realized gain at 2.4 GHz. The antenna bandwidth and gain have been increased using developed quad SRR based metasurface by 500 MHz and 0.6 dBi respectively. Moreover, the proposed quad SRR loaded antenna can be used for 2.4 GHz WLAN bands and 2.5 GHz WiMAX applications. The contribution of this work is to develop a cost-effective inject printed metamaterial to enhance the impedance bandwidth and realized the gain of a WLAN/WiMAX antenna.  相似文献   

20.
Simple design guidelines for an ultra wideband aperture-coupled vertical microstrip-microstrip transition are presented. The proposed transition uses broadside coupling between elliptical-shaped microstrip patches at the top and bottom layers via an elliptical-shaped slot in the mid-layer. Theoretical analysis indicates that the best performance concerning the insertion loss and the return loss over the maximum possible bandwidth can be achieved when the between the top and bottom coupled patches is equal to 0.8 (or 1.94 dB). Simulated and measured results show that the proposed transition has an insertion loss of <0.7 dB and a return loss of >15 dB across the frequency band 3.1-10.6 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号