首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于笔迹的身份鉴别   总被引:26,自引:0,他引:26  
提出了一种鉴别笔迹的新方法.现有的笔迹识别方法大多需要进行分割或关联部分的分析,都是与内容相关的方法.在新方法里,把手写笔迹作为一种纹理来看待,将笔迹鉴别的问题转化为纹理识别来处理,这是一种与内容无关的方法.使用多通道二维Gabor滤波器来提取这些纹理的特征,并使用加权欧氏距离分类器来完成匹配工作.在实验中,使用了17个人的不同笔迹,取得了很好的结果.  相似文献   

2.
离线笔迹鉴别在司法鉴定与历史文档分析中有重要作用.当前的主要离线笔迹鉴别都是基于局部特征提取的方法, 其在笔迹检索中严重依赖于数据增强和全局编码, 在笔迹识别中需要较多的笔迹信息.针对这一问题, 本文提出一种基于统计的文档行分割与深度卷积神经网络相结合的离线笔迹鉴别方法(DLS-CNN).首先, 使用基于统计的文档行分割方法将笔迹材料分割成小的像素块; 然后, 用优化后的残差神经网络作为识别模型; 最后, 对局部特征使用取均值法进行编码.在ICDAR2013和CVL这两个标准数据集上的实验结果表明, 该方法能有效获得鲁棒的局部特征, 从而仅需要少量的笔迹信息就能取得较高的识别率, 而且不需依赖于数据增强和全局编码就能取得较好的检索效果.实验代码地址:https://github.com/shiming-chen/DLS-CNN.  相似文献   

3.
针对已有的笔迹鉴别方法对笔迹版式的要求比较严格、训练过程耗时、对内容不受限制的小样本数据情况下鉴别性能较低等问题, 提出了基于混合码本与因子分析的文本独立笔迹鉴别算法. 该算法提取写作时常用的子图像, 并用描述符标注“代码”建立“码本”. 在特征提取层, 分别采用加权的方向指数直方图法和距离变换法, 对于具有相同描述符的“代码”计算特征距离. 把影响特征距离的因素分为书写因子和字符因子, 对码本中的每个书写模式进行双因子方差分析. 在IAM和Firemaker这两个标准数据集上的实验结果证明, 相比目前国内外的先进已有方法, 本文提出的算法在精度和速度方面有一定的优势, 具有一定的推广价值, 适合处理多语种的笔迹鉴别问题.  相似文献   

4.
随着大数据时代的演进,互联网中的谣言成井喷状涌现.目前网络谣言鉴别方法中,基于监督学习的模型在训练过程中需要大量标注数据,同时网络谣言的人工标注用时较长,故提出采用半监督学习的图卷积神经网络,可有效利用无标注数据.通过在有标注节点上训练模型,更新所有节点共享的权重矩阵,将有标注节点信息传播给无标注节点,同时解决监督学习...  相似文献   

5.
一种基于微结构特征的多文种文本无关笔迹鉴别方法   总被引:4,自引:0,他引:4  
李昕  丁晓青  彭良瑞 《自动化学报》2009,35(9):1199-1208
与字符识别一样, 计算机自动笔迹鉴别是一个涉及到不同文种的研究课题. 本文提出了一种基于网格窗口微结构特征的文本无关的笔迹鉴别方法, 能适用于各种不同文种的笔迹. 该方法对笔迹中局部细微结构的书写变化趋势进行描述, 并采用加权距离度量方法进行笔迹相似性度量. 利用该方法实现了文本无关的多文种笔迹检索系统, 并在实际汉字、英文、藏文和维吾尔文的笔迹库上进行了测试. 实验证明, 该方法是一种高效且适用性较广、限制性较少的笔迹鉴别方法.  相似文献   

6.
利用神经网络进行辐射源个体识别时,训练样本的单一性会导致深度网络出现过拟合的现象,继而影响辐射源个体识别的精确性。针对该问题,本文提出一种基于PID算法的深度卷积网络结构,该结构通过在传统卷积神经网络的输出层与输入层间构建一条反馈回路,采用PID算法将网络输出错误率转化为划分训练集数据构成的概率,通过优化训练集数据构成,达到抑制过拟合的目的。将该方法应用于超短波电台识别,平均识别率达到92.59%,识别率方差约为传统算法的1/3,训练用时减少约35 min,上述指标均优于传统神经网络。实验结果表明,该算法增强了深度网络的鲁棒性,有效地抑制了过拟合现象。  相似文献   

7.
针对常用的卷烟包装图像真伪鉴别,目前深度学习方法需要较高的设备成本与较长的训练时间。本文提出了一种基于Inception和ResNet卷积神经网络结合的卷烟包装图像真伪鉴别模型IRCNN(Inception-ResNet Convolutional Neural Network)。利用Inception网络并行结构自动学习并提取卷烟包装图像的不同尺度特征,同时在线路中加入三维卷积核,有效地增强不同线路之间的信息交互。利用残差结构减少由于网络加深导致的模型退化。实验结果表明,与其他深度学习方法相比较,本文提出的方法不仅减少算法设备成本和训练时间,而且准确率可达到99.88%。因此,通过采用多线路Inception和残差网络相结合的IRCNN模型,可以有效地提高卷烟真伪鉴别效率和精度,为将来实际应用提供技术支持。  相似文献   

8.
从给定语音中提取有效语音段表示是语种识别的关键点。近年来深度学习在语种识别应用中有重要的进展,通过深度神经网络可以提取音素相关特征,并有效提升系统性能。基于深度学习的端对端语种识别系统也表现出其优异的识别性能。本文针对语种识别任务提出了基于卷积神经网络的端对端语种识别系统,利用神经网络强大的特征提取能力及区分性建模能力,提取具有语种区分性的基本单元,再通过池化层得到有效语音段表示,最后输入全连接层得到识别结果。实验表明,在NIST LRE 2009数据集上,相比于现阶段国际主流语种识别系统,提出的系统在30 s,10 s和3 s等语音段上错误率分别相对下降了1.35%,12.79%和29.84%,且平均错误代价在3种时长上均相对下降30%以上。  相似文献   

9.
针对苹果栽培品种识别分类问题,提供一个包含多个苹果果树品种的叶片图像原始数据集,并且研究构建一种新的深度卷积神经网络分类模型,对其分类准确性、泛化性能和稳定性进行对比验证,以期对苹果栽培品种简便、快速、准确的识别分类提供理论依据和技术支持。以甘肃省平凉市静宁县果树果品研究所苹果良种苗木繁育基地作为实验基地,在其中选取14个苹果果树品种。每个品种选取10棵左右树龄、树势、长势都存在差异的果树,采摘100片左右成熟的、无机械损伤的叶片,然后拍摄叶片图像建立数据集,进而利用卷积神经网络训练识别分类模型。本文针对苹果栽培品种识别分类,提供一个包含14个苹果果树品种共计14394张叶片图像的原始数据集,并且设计实现基于卷积神经网络的识别分类模型。实验结果表明,该识别分类模型有较高的准确率,训练集训练精度可以达到99.88%,验证集验证精度为94.36%,独立测试集的测试精度为90.49%。本文的研究结果可以为现代苹果田间种植及科研试验等实际场景提供力所能及的帮助,为深度卷积神经网络技术在植物品种识别分类实际应用场景提供参考,丰富深度学习在农业上的应用。  相似文献   

10.
基于笔迹的身份鉴别   总被引:2,自引:0,他引:2  
提出了一种基于小波分析的笔迹鉴别改进方法。现有的利用小波分析的签字鉴别方法大都建立在把整个签字当作图像,再对整幅图像通过Mallat塔式算法进行多分辨率分析的基础上,所提取的签字特征中总体特征相对较多,细节特征较少。论文所述方法先对签字的每一笔画进行复信号小波分解,然后将反映细节特征的笔画信息进行合成,最后使用马氏距离分类器完成匹配工作。理论分析和实验结果均表明了该算法的有效性。  相似文献   

11.
基于多通道分解与匹配的笔迹鉴别研究   总被引:17,自引:0,他引:17  
笔迹鉴别是通过分析手写字符的书写风格来判断书写人身份的一门技术.笔迹鉴别的关键步骤是提取反映书写风格的笔迹特征.笔迹特征包括笔划位置、方向、搭配关系等,它们可以通过图像多通道分解提取和表达出来.本文提出一种用于笔迹鉴别的二值图像多通道分解方法,利用字符的笔划方向性先进行方向分解,然后对每个方向的子图像进行频带分解.用分解后的采样信号值作为笔迹特征,用特征匹配方法进行书写人识别,得到了很好的实验结果.  相似文献   

12.
为了黑白和灰度老旧照片的上色效果,论文提出了一种改进后的生成对抗网络的图像上色方法.与传统的上色方法相比,使用机器学习的方法提取图像的色彩特征,避免了人工特征提取的时间成本,提高了图像上色的效率.加快了上色的速度.实验针对收集的图像数据集,通过对目标函数添加L1正则化约束条件提高图像上色的效果.在训练好的网络模型后,能...  相似文献   

13.
李玉凤  吴塞 《微计算机信息》2007,23(33):226-227,214
本研究以手写汉字的基本笔画为对象,确定反映书写特征的相对幅度和相对斜率为时域特征,并对时域特征进行Fourier变换,抽取变换实系数形成特征空间,实现笔迹鉴定。本研究采用10位书写者,各书写70个汉字,提取5种基本笔画,进行笔迹鉴定的实验,实验取得了满意的结果。  相似文献   

14.
马良  熊富海  颜延  黄志文  王磊 《集成技术》2023,12(5):92-106
机械通气过程中人机不同步(patient-ventilator asynchrony,PVA)是常见问题。随着智能生理闭环通气成为呼吸机的主要发展方向,机械通气过程将不再局限于传统的通气模式,且针对 PVA 的智能识别模型,现有技术存在弱泛化性和高复杂度的特点。为此,该文的主要工作是:首先,将定压型与定容型通气模式的混合作为样本;其次,设置 Hold-out 和留一法两种交叉验证实验,以验证混合通气模式下 PVA 的识别任务可行性。此外,为提高 PVA 识别任务中模型的泛化性能,该文提出了基于相空间重建的卷积神经网络(phase-space reconstruction-based convolutional neural network,PSR-CNN)模型,通过交叉验证对现有公开报道的方法做模型选择。在模型构造过程中,相空间重建的最优时间延迟参数和嵌入维度分别使用平均互信息和伪近邻算法估计;在交叉验证过程中,同时使用降采样和补零技术,以保证实验的正常运行。结果显示,就全局指标 accuracy 和 F1-score 而言,该文提出的 PSR-CNN 模型,分别高出对比模型约 7% 和 6%;且 PSR-CNN 单个样本的平均训练耗时最短,约 2 ms。综上所述,该文探索了混合通气模式下 PVA 识别的可行性,且在该任务的框架内提出了 PSRCNN 模型,提高了 PVA 分类任务中模型的泛化性能,降低了模型的复杂度。该文的工作对呼吸机在工程上的智能化发展具有重要参考意义与应用价值。  相似文献   

15.
针对固体发动机烧蚀率的预示,现有传统建模方法存在复杂度高、计算需求大、试验数据少、样本不平衡等问题,提出了一种基于深度卷积神经网络和数据增强的固体发动机烧蚀率预示方法。将传感器数据处理为长度相同、特征相近的序列数据,并使用自适应高斯噪声和随机漂移这2种数据增强方法扩充数据样本,再将扩充后的试验样本和伪样本作为深度卷积神经网络的输入进行训练,将训练得到的模型与传统方法计算得到的烧蚀率预示值进行对比。结果表明,该方法下烧蚀率预示值误差低至0.013 5 m/s,预示精度可达95%。  相似文献   

16.
基于特征融合的脱机中文笔迹鉴别   总被引:1,自引:0,他引:1  
提出一种基于文本依存笔迹特征融合的文本独立特征构造方法。建立基于方向指数直方图法笔迹特征(文本依存特征)的两因子分解模型。笔迹特征可分解成字符因子和书写因子两部分。通过两因子方差分析与数据挖掘,分离出与字符无关的书写因子,得到基于文本依存方法的文本独立特征。该方法对检材与样本笔迹的字符数量较少,特别是相同字很少或是根本没有相同字的情况下,能取得较理想的笔迹鉴别准确率,为少量字笔迹鉴别提供解决问题的思路。  相似文献   

17.
识别并评价油气储层是油田勘探开发工作中至关重要的部分,而目前现有的岩性识别方法一般不能表述地层的非均质性,也没有考虑到地层参数随着深度而变化所产生的影响.本文提出一种基于径向基过程神经网络的岩性识别模型,并用实际数据进行了验证.实验结果表明,所提出的方法有着较高的识别率,是一种可以实际应用的方法.  相似文献   

18.
以提升电力检修票智能识别准确率和识别效率为目标,提出卷积神经网络的电力检修票智能识别方法.实验结果表明,该方法能够很好完成特征点匹配;且电力检修票的智能识别准确率高、识别效率快,具备良好的使用性能.  相似文献   

19.
范梅梅  马彦恒  齐晓慧 《微计算机信息》2007,23(22):265-266,269
本文旨在探讨应用于侦察雷达的一种目标识别方法。选择目标回波信号的多普勒频率作为目标特征,采用目前被广泛应用的BP网络构建人工神经网络模型,对某型战场侦察雷达的目标样本进行训练,并进行测试。在识别过程中不断对训练样本及训练目标进行更新,提高了识别正确率和识别速度。  相似文献   

20.
基于TACNN的玉露香梨叶虫害识别   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解决玉露香梨叶虫害种类多、扩散速度快、人工识别梨叶虫害耗时长的问题,提出了能够在自然环境下对玉露香梨叶虫害图像自动识别的Tiny-Alexnet卷积神经网络(Tiny-Alexnet Convolution Neural Network,TACNN)的虫害识别模型.分析了Alexnet模型的网络结构,并将实地采集的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号