共查询到19条相似文献,搜索用时 116 毫秒
1.
入侵检测在计算机网络安全防御中起着至关重要的作用,是网络安全的关键技术之一.随着网络环境越来越复杂,网络入侵行为也逐渐表现出了多样化及智能化的特点,且越来越难以被检测到.基于上述原因,人们对已有入侵检测方法的可行性与可持续性表示担忧,具体来说就是已有的入侵检测算法很难完美地抽象出入侵行为所包含的特征,且已有的入侵检测方... 相似文献
3.
4.
5.
传统的电网工控系统主要通过防火墙等工具, 与外部网络进行隔离, 但是随着云计算、物联网等新技术的应用, 网络之间互联程度不断深入, 安全防护难度大大提高, 如何有效检测出网络入侵行为变得至关重要. 与传统入侵检测技术相比, 卷积神经网络具有更好的提取入侵特征的能力. 本文提出一种基于卷积神经网络的电网工控系统入侵检测算法, 使用经过处理的KDD99数据集进行模型训练, 并添加级联卷积层优化网络结构. 在参数规模不大的前提下, 保证了模型运行的实时性要求. 本文算法相对于传统SVM算法和K-means算法, 提高了入侵检测的准确率, 降低了误检率, 可以有效检测出对于电网工控系统的入侵行为. 相似文献
6.
7.
8.
10.
《计算机科学与探索》2017,(3):502-510
从三支决策发展历史出发,在总结三支决策近年来研究的基础上,基于三支决策现有模型、算法及应用,提出了一种广义三支决策和狭义三支决策理论。广义三支决策注重对三支决策概念内涵和外延进行诠释;狭义三支决策主要注重三支决策在实际决策问题中的语义解释。提出了一种"四层次"三支粒结构决策模型,从静态和动态、广义和狭义两种视角对三支决策进行剖析,厘清了三支决策发展过程和研究脉络。最后,给出了三支决策的研究现状和未来发展方向。 相似文献
11.
针对嵌入式平台下卷积神经网络运行速度慢,无法快速手势检测的问题,提出一种基于SSD的卷积神经网络的嵌入式手势检测算法,该算法显著提高了手势检测速度,并保持了高精度。首先通过一种预处理方法,对原来的手势数据库进行5倍扩展;然后对SSD算法的基础神经网络层进行卷积因子分解,使用MobileNet神经网络获得了在CPU下的3倍加速;最后通过改变输入图片大小同时改变网络结构,减少了算法的计算复杂度。实验结果表明所提算法在两个数据集上的平均精度均值(Mean Average Precision,mAP)下降2.7%,但是在Qualcomm SnapDragon 820平台下检测一张图片时间可达到0.233 s,检测速度提高40倍以上。 相似文献
12.
入侵检测是信息安全防护领域中的一个重要环节.随着网络技术的发展,主动防御网络入侵变得越来越重要,同时入侵数据变得更加海量、复杂和不平衡,这导致传统的入侵检测技术的检测性能比较低,因此如何提高入侵检测系统的性能对于不平衡数据集的检测性能是一项巨大的挑战.传统的CNN模型对于处理复杂的数据具有很好的性能,但是在处理不平衡数... 相似文献
13.
基于神经网络的入侵检测系统 总被引:8,自引:0,他引:8
文章在对现有入侵检测系统所存在不足进行分析的基础上,提出了一个基于神经网络技术的网络入侵检测系统模型,运用神经网络所特有的自学习、自组织能力,弥补现有入侵检测系统所存在的不足。 相似文献
14.
具有优越性能的卷积神经网络算法已得到广泛应用,但其参数量大、计算复杂、层间独立性高等特点也使其难以高效地部署在较低功耗和较少资源的边缘场景.为此结合该种算法的特点提出了一种基于混合架构的卷积神经网络计算加速方法,该方法选用CPU加FPGA的混合架构,对网络模型进行了压缩优化;在FPGA上通过指令控制数据流的DSP阵列结... 相似文献
15.
针对行人在部分自然场景图像中所占比例较小(以下简称小目标),提取的特征容易丢失,检测准确率低的问题,提出基于候选区域和并行卷积神经网络(Parallel Convolutional Neural Network,PCNN)的行人检测方法。对于候选区域提取部分,改进了选择性搜索,使其更符合行人这一类别的候选区域提取;利用Edge Boxes对选择性搜索提取的大量预候选区域进行过滤,最终得到数量少、质量高的候选区域。在利用卷积神经网络(Convolutional Neural Network,CNN)进行特征提取时,针对深层卷积神经网络能够提取到更丰富更抽象的高层特征,但同时对于小目标容易造成特征丢失的问题,加入浅层网络组成并行卷积神经网络(Parallel Convolutional Neural Network,PCNN)提取深、浅层特征输出。最后将所提方法应用于行人检测,实验结果表明,所提方法对于小目标的检测准确率有较好的提升。 相似文献
16.
深度学习是机器学习和人工智能研究的最新趋势,作为一个十余年来快速发展的崭新领域,越来越受到研究者的关注.卷积神经网络(CNN)模型是深度学习模型中最重要的一种经典结构,其性能在近年来深度学习任务上逐步提高.由于可以自动学习样本数据的特征表示,卷积神经网络已经广泛应用于图像分类、目标检测、语义分割以及自然语言处理等领域.... 相似文献
17.
为了解决对于尺度变换较大车辆及遮挡车辆检测性能不足的问题,提出了一种实时车辆检测模型.针对车辆检测算法对于尺度敏感的问题,通过使用深度残差网络作为特征提取层,构建特征金字塔网络用于多尺度检测;利用软化非极大抑制线性衰减置信得分解决车辆遮挡问题,从而降低车辆的漏检率;同时对模型进行通道级裁剪缩减模型参数规模,节省计算资源... 相似文献
18.
识别多尺度目标和遮挡目标是目标检测中的重点和难点。为了检测不同大小的目标,目标检测器通常利用卷积神经网络(CNN)的多尺度特征图层次结构,然而这种自顶向下的结构由于底层特征图的卷积层较小,缺乏获取小目标特征所需的细节信息,这些目标检测器的性能受到了限制。为此,结合Faster R-CNN框架提出Collaborative R-CNN,设计了一种级联网络结构,可以融合多尺度特征图,以生成深度融合的特征信息来增强小目标所需的细节特征,从而提高检测小目标的能力。此外,由于使用RoIPooling过程中的量化会对小目标检测造成极大的限制,为进一步提高方法的鲁棒性,设计了多尺度RoIAlign来消除这种量化,并通过多尺度的池化来提高网络检测不同尺度目标的能力。最后,将对抗网络与所提出的级联网络相结合,生成包含遮挡目标的训练样本,可显著提高模型的分类能力和识别遮挡目标的鲁棒性。在PASCAL VOC 2012和PASCAL VOC 2007数据集上的实验结果表明,提出的方法优于许多先进的方法。 相似文献
19.
在临床实践中, 精确评估疼痛对于疼痛管理和诊断至关重要. 但传统的评估方法主观性高且依赖医生经验, 迫切需要更可靠客观的替代方法. 利用深度学习的方法实现基于面部表情的疼痛检测研究近年已取得显著进展, 但复杂的结构和高计算成本制约了其实际应用. 因此, 本文提出了一个改进的3D卷积神经网络, 采用轻量级的3D卷积神经网络L3D作为骨干网络, 并结合改进的SE注意力机制, 把多个不同尺度的特征进行融合, 捕捉疼痛序列中具有较强辨别能力的时空特征. 在UNBC-McMaster和BioVid数据集上进行评估, 与最新方法相比, 该方法在疼痛检测性能以及计算复杂度上取得了优势. 相似文献