共查询到18条相似文献,搜索用时 31 毫秒
1.
失水事故下堆芯余热排出时,板状燃料元件表面因冷却剂引入负溶解度盐杂质而发生污垢沉积,导致传热性能恶化甚至堵塞通道。为研究矩形窄缝通道内受热表面污垢沉积特性,设计搭建了一种采集矩形窄缝通道表面特定方位处污垢样品的实验装置,以碳酸钙作为可溶性杂质,对60 mm×2 mm截面的矩形窄缝通道受热面污垢沉积过程进行实验测试,观测通道不同位置、不同时间下污垢沉积的微观形貌特征,测量污垢厚度的分布特性,并探究污垢沉积对壁面传热的影响规律。结果表明:污垢形态随沉积时间增加而改变,不同位置处的沉积厚度差异显著,通道传热系数随时间先下降后趋于稳定,下降幅度为26.49%。 相似文献
2.
3.
4.
建立窄矩形通道在摇摆条件下湍流流动的物理数学模型,应用数值分析方法模拟窄矩形通道的三维非稳态流动的传热过程;考察摇摆条件下通道内流动阻力和换热性能及其随雷诺数Re、摇摆周期T及摇摆幅度max影响的变化规律。结果表明,摇摆状态下窄矩形通道内速度场呈周期性变化;时均摩擦系数favg和时均努塞尔数Nuavg比非摇摆工况下的结果大,Nuavg满足拟合公式0.851 0.4Nu 0.023Re Pr;在相同Re和摇摆周期T下,通道内流体摩擦压降和Nu的变化幅值随max的增大而增大,其变化周期等于T;在相同Re和max下,摩擦压降pf和Nu的变化幅值随T的增大而减小,其变化周期等于T。 相似文献
5.
6.
7.
8.
9.
10.
11.
矩形窄缝通道流动不稳定起始现象实验研究 总被引:3,自引:1,他引:3
以去离子水为工质,在P=1~15 MPa,G=50~2000 kg/(m2·s),△Tsub,in=20~100 ℃,q=40~1000 kW/m2的参数范围内,实验研究了1000×25×2 mm矩形窄缝通道内工质向上流动时,重要热工水力参数对通道流动不稳定起始点(OFI)的影响特征.得到了OFI点与系统参数(包括系统压力、入口过冷度和热流密度)之间的关系;讨论了OFI点与出口热平衡含汽率之间的关系.用St数和Pe数建立了适合于本实验参数和相近条件下的流动不稳定起始点计算关系式:当热流密度低于400kW/m2时,其预测偏差在±30%以内;热流密度高于400kW/m2时,其预测偏差在±10%以内.用OFI点的热流密度与出口达到饱和时的热流密度之间的关系拟合得到经验关系式:当热流密度低于400kW/m2时,其预测偏差在±15%以内;在热流密度高于400kW/m2时,其预测偏差在±5%以内. 相似文献
12.
为了解矩形窄缝通道在失水事故(LOCA)下底部再淹没过程中的热工水力特性,在不同实验条件下开展再淹没实验研究。矩形窄缝通道由2块因科镍合金焊接而成,本研究根据温度变化曲线分析底部再淹没过程,计算并对比不同实验工况下的骤冷前沿的推进速度(骤冷速度),以及研究实验参数对再淹没过程的影响。实验结果表明,底部再淹没骤冷速度随着系统压力增大、进口流速增大、初始壁面温度降低以及冷却水过冷度的增大而增大。对比分析底部与联合再淹没工况,结果表明流量相同的情况下,底部再淹没的骤冷速度大于联合再淹没。本文研究为板状燃料元件反应堆事故预防以及事故缓解等研究奠定了基础。 相似文献
13.
以未除气去离子水为工质,在P=1~15 MPa,G=500~2 000 kg/(m2 · s),ΔTsub,in=20~100 ℃,q=40~1 000 kW/m2的参数范围,以1 000 mm×25 mm×2 mm矩形窄缝通道内垂直向上流动条件下流动不稳定起始点的实验数据为依据,对Saha-Zuber,Levy,Bowring等人提出的预测OSV点关系式和Whittle & Forgan,Lee & Bankoff,Kennedy等人提出的预测OFI点关系式进行了对比分析.结果表明:建立在过冷沸腾基础上的这些预测关系式对OFI点的预测偏差大部分在±20%以内,而其预测结果在低热流密度下低于实验值,在高热流密度下预测结果高于实验值.同时,基于实验数据建立了一个流动不稳定起始点的计算关系式:qOFI=1.95,其预测偏差在±15%以内.与其它实验数据的对比结果表明:本文得到的关系式对其它通道也具有比较好的适用性. 相似文献
14.
15.
Visual experimental study focusing on bubble growth and departure behaviors in a narrow rectangular channel was carried out in this paper. Deionized water was used as working fluid, and the experiment was performed at atmospheric pressure. The cross section of the narrow rectangular channel is 2 mm × 8 mm. A high speed digital camera was applied to capture the behaviors of bubble growth and bubble departure from the nucleation site. The bubble departure diameter, bubble inclination angle, upstream contact angle, downstream contact angle and bubble contact diameter were obtained according to the observation. An analysis of force balance on a growing bubble was performed to predict the bubble departure diameter in the narrow channel, and the effect of bubble interface parameters on the prediction of bubble departure diameters was discussed in this paper. The result of predicted model agrees well with the experimental result with a maximum relative deviation less than 25%. According to the study proposed in this paper, the mechanism of bubble departure from a nucleation site can be explained based on the force balance analysis of a growing bubble, and the major forces dominating the bubble departure are the buoyancy force, surface tension force and quasi-steady drag force. 相似文献
16.
17.
窄矩形通道因具有结构紧凑、换热面积大等优点而被广泛应用于各个领域。通过完善窄矩形通道中临界热流密度(CHF)的预测方法,建立CHF机理模型,可以提高反应堆的安全性和经济性。本文对窄矩形通道内竖直向上流动CHF进行了可视化实验研究,在此基础上开发了一种基于加热壁面能量平衡的CHF机理模型,并提供一组本构关系用于封闭所开发的新模型,同时使用实验数据对新模型进行对比评价,对比结果发现,新模型在窄矩形通道中模拟结果良好,偏差基本都在±20%之间。 相似文献