首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对炼焦厂烟火排放全天候环保监测的要求,提出了基于改进YOLOv5s的焦炉烟火识别算法;该算法以YOLOv5s为基础网络,在主干网络Backbone中添加CBAM注意力机制模块,使网络更加关注重要的特征,提升目标检测的准确率;新增FReLU激活函数代替SiLU激活函数,提高激活空间的灵敏度,改善烟火图像视觉任务;在自建数据集中烟、火样本标签基础上,增加灯光标签来解决强灯光对火焰识别的干扰,并通过分流训练、检测的方式来解决昼夜场景的烟火检测问题;在自建数据集上做对比实验,更换激活函数后,联合CBAM模块的YOLOv5s模型效果最佳;实验结果显示,与原始YOLOv5s模型相比,在白天场景下的烟火识别mAP值提升了6.7%,在夜间场景下的烟火识别mAP值高达97.4%。  相似文献   

2.
3.
为了准确且实时地检测到交通标志指示牌,减少交通事故的发生和推动智慧交通的发展,针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题,设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC.首先,使用copy-paste进行数据增强后再送入网络进行训练,加强对小目标的检测能力;然后,引入Ghost来构建网络,削减原网络的参数和计算量,实现轻量化模型;最后,将坐标注意力机制(coordinate attention)融合到骨干网络里,增强对待测目标的表示和定位能力,提高识别精度.实验结果表明,YOLOv5s-GC模型相比于原YOLOv5s模型,参数数目减少了12%,检测速度提高了22%,平均精度达到了94.2%,易于部署且能满足实际自动驾驶场景中对识别交通标志的速度和准确度要求.  相似文献   

4.
针对目前疼痛表情识别模型结构复杂、计算量大、检测速度慢、不易移植等问题,提出一种针对移动端设备的轻量化人脸疼痛表情识别算法。首先引入GhostNet网络结构中的Ghost模块卷积,压缩模型的参数量,减小计算开销;之后用改进的FReLu激活函数替换SiLu激活函数,提升识别精度与检测效率;最后引入CA注意力机制,对人脸疼痛表情特征区域增加关注度,提升算法对疼痛表情模型的识别精度。实验结果表明,改进后的模型对疼痛表情识别精度达到96.9%;每张图片检测时间为53 ms,相比YOLOv5s模型用时缩短18%;模型大小相比YOLOv5s下降41.3%。适用于移动端设备的实时疼痛表情识别。  相似文献   

5.
针对无人机飞行时与目标距离较远,被拍摄的目标大小有明显的差异且存在被物体遮挡等问题,提出一种基于YOLOv5s的无人机视角下小目标检测改进算法BD-YOLO。在特征融合网络中采用双层路由注意力(bi-level routing attention,BRA),其以动态稀疏的方式过滤特征图中最不相关的特征,保留部分重要区域特征,从而提高模型特征提取的能力;由于特征图经过多次下采样后会丢失大量位置信息和特征信息,因此采用一种结合注意力机制的动态目标检测头DyHead(dynamic head),该检测头通过尺度感知、空间感知和任务感知的三者统一,以实现更强的特征表达能力;使用Focal-EIoU损失函数,来解决YOLOv5s中CIoU Loss计算回归结果不准确的问题,从而提高模型对小型目标的检测精度。实验结果表明,在VisDrone2019-DET数据集上,BD-YOLO模型较YOLOv5s模型在平均精度(mAP@0.5)指标上提高了0.062,对比其他主流模型对于小目标的检测都有更好的效果。  相似文献   

6.
近年来,随着我国制造业的快速发展,铝材的需求量日益增长。然而,铝材在生产过程中会出现不同类型的缺陷,这些缺陷影响铝材的质量、美观度和使用寿命。为实现快速、准确地识别铝片表面缺陷,基于YOLOv5网络提出了一种改进的铝片表面缺陷检测方法。为了提高检测模型的特征提取和特征融合能力,引入注意力机制CBAM模块,协助模型关注和提取更有用的特征信息。在回归损失方面,采用Alpha-IoU函数来替代原来的CIOU损失函数,降低预测框的回归损失,提升定位精度。通过实验验证,该方法能够有效识别铝片表面的缺陷类型和位置,具有较高的实用价值。  相似文献   

7.
针对白细胞数据样本少、类间差别小及目标尺寸小导致的检测精度低、效果不佳等问题,提出一种基于改进YOLOv5的白细胞检测算法YOLOv5-CHE.在主干特征提取网络的卷积层中添加坐标注意力机制,以提升算法的特征提取能力;使用四尺度特征检测,重新获取锚点框,增加浅层检测尺度,来提高小目标的识别精度;改变边框回归损失函数,以...  相似文献   

8.
针对现有手势识别算法计算量大、鲁棒性差等问题,提出一种基于IYOLOv5-Med(improved YOLOv5 Mediapipe)算法的手势识别方法。该算法将改进的YOLOv5算法和Mediapipe方法结合,包括手势检测和手势分析两部分,算法有效降低了训练的时间成本,增加了识别的鲁棒性。手势检测部分,改进了传统YOLOv5算法,利用FastNet重构C3模块,将CBS模块替换为GhostNet中GhostConv模块,在Backbone网络末端加入SE注意力机制模块,改进后的算法,模型体积更小,更适用于资源有限的边缘设备。手势分析部分,提出了一种基于Mediapipe的方法,对手势检测部分定位到的手势区域进行手部关键点检测,并提取相关特征,然后通过朴素贝叶斯分类器进行识别。实验结果证实了提出的IYOLOv5-Med算法的有效性,与传统YOLOv5算法相比,参数量下降34.5%,计算量减少34.9%,模型权重降低33.2%,最终平均识别率达到0.997,且实现方法相对简单,有较好的应用前景。  相似文献   

9.
基于铝型材表面瑕疵类别多样,对实时检测快速精准的需求,提出一种基于改进YOLOv5的瑕疵检测算法。通过在原始骨干网络的基础上增加新检测层并使用K-means++算法改进锚框的生成方式,提升检测尺度,避免忽视低层语义信息。对铝型材瑕疵数据集离线增强,丰富样本容量;在Backbone网络结构中融入新的卷积结构和E-CBAM注意力机制,提高网络的特征提取能力的同时降低冗余计算,提升模型检测性能;采用EIoU Loss作为整个网络结构的损失函数来加快收敛效率,解决难易样本不平衡的问题。实验结果表明,在铝型材瑕疵数据集上将改进后YOLOv5检测模型与原始YOLOv5模型进行比较,平均精度mAP提升2.9百分点,召回率Recall提升3.9百分点,速度FPS达至45.8,将近年来的代表性算法YOLOv3、YOLOv4、SSD、Faster-rcnn与改进后的检测算法在铝型材瑕疵数据集上进行性能比较,通过综合对比检测精度、检测速度等重要参数证明改进后的YOLOv5检测算法更好地兼顾了检测效率和检测精度。所提方法满足了铝型材工厂生产现场瑕疵检测要求。  相似文献   

10.
在计算机视觉的内窥胃部息肉检测中, 高效提取小型息肉图像特征是设计深度学习的计算机视觉模型一个难点. 针对该问题, 提出了一种YOLOv4改进的YOLOv4-polyp检测模型. 首先在YOLOv4的基础上, 引入CBAM卷积注意力模块增强模型在复杂环境的特征提取能力; 其次设计出轻量级CSPDarknet-49网络模型, 在降低模型复杂度的同时提高检测精度和检测速度; 最后根据胃息肉数据集的特点, 采用K-means++聚类算法对胃息肉数据集进行聚类分析, 得到优化后的锚框. 实验对比结果表明, YOLOv4-polyp对于经典YOLOv4模型在保持检测速率不变的同时, 在两个数据集中平均检测精度分别提升了5.21%和2.05%, 表现出良好的检测性能.  相似文献   

11.
交通标志识别是自动驾驶技术中的关键一部分.针对交通标志在道路场景中目标较小且识别精度较低的问题,提出一种改进的YOLOv5算法.首先在YOLOv5模型中引入全局注意力机制(GAM),提高网络捕获不同尺度交通标志特征的能力;其次将YOLOv5算法中使用的GIoU损失函数更换为更具回归特性的CIoU损失函数来优化模型,提高对交通标志的识别精度.最后在Tsinghua-Tencent 100K数据集上进行训练,实验结果表明,改进后的YOLOv5算法对交通标志识别的平均精度均值为93.00%,相比于原算法提升了5.72%,具有更好的识别性能.  相似文献   

12.
为了实时检测并识别路上的交通标志,针对在不良光照情况影响下小型交通标志的识别精确度较低、误检、漏检严重的问题,提出了一种基于改进YOLOv5的交通标志识别模型.首先在YOLOv5模型的浅层特征图层增加一次concat操作,将浅层的特征信息结合中间特征图层作为一个检测头,有利于小目标交通标志的识别效率.其次将坐标注意力机制添加到YOLOv5模型中,从而提高特征提取的效率.对中国交通标志数据集TT100K进行数据扩充和暗光增强的操作,最后在经过预处理的TT100K数据集上验证本文改进的模型检测效果.实验结果表明本文改进的模型对小目标及昏暗情况的交通标志识别效率有很大的提升.本文改进的YOLOv5模型与最初的YOLOv5模型均在扩充后的数据集上进行训练后的结果相比,在准确率上提升了1.5%,达到了93.4%;召回率提升了6.8%,达到了92.3%; mAP值提高了5.2%,达到了96.2%.  相似文献   

13.
针对YOLOv2算法实际检测到的小尺寸交通标志质量不佳,识别率低,实时性差的问题,提出一种基于改进YOLOv2的交通标志检测方法.首先,通过直方图均衡化、BM3D对图像增强以获取高质量图像;接着,将网络顶层卷积层输出的特征图进行精细划分,得到高细粒度的特征图,以检测高质量、小尺寸的交通标志;最后,采用归一化及优化置信度评分比例对损失函数进行改进.在结合CCTSD (中国交通标志检测数据集)和TT100K数据集的新数据集上进行实验,与YOLOv2网络模型相比,经过改进后的网络识别率提高了8.7%,同时模型的识别速度提高了15 FPS.实验结果表明:所提方法能够对小尺寸交通标志进行精准检测.  相似文献   

14.
自动驾驶技术的快速发展,导致对交通标志检测技术的要求日益提高.为解决YOLOv7算法在识别小目标时误检、漏检等问题,本文提出一种基于注意力机制的交通标志检测模型YOLOv7-PC.首先通过K-means++聚类算法对交通标志数据集进行聚类,获得适用于检测交通标志的锚框;其次在YOLOv7主干特征提取网络中引入坐标注意力机制,将交通标志的横向和纵向信息嵌入到通道中,使生成的特征信息具有交通标志的坐标信息,加强有效特征的提取;最后在加强特征提取网络中引入空洞空间金字塔池化,捕获交通标志多尺度上下文信息,在保证交通标志小目标分辨率的同时,进一步扩大卷积的感受野.在中国交通标志检测数据集(CCTSDB)上的实验表明,本文算法增强了识别小目标的能力,相较于YOLOv7模型,本文算法的m AP、召回率平均分别提高了5.22%、9.01%,是一种有效的交通标志检测算法.  相似文献   

15.
针对目前复杂环境下因光照不均匀、背景近肤色以及手势尺度较小等原因导致的手势检测算法识别率低的问题,提出了一种手势识别方法 HD-YOLOv5s。首先采用基于Retinex理论的自适应Gamma图像增强预处理方法降低光照变化对手势识别效果的影响;其次构建具有自适应卷积注意力机制SKNet的特征提取网络,提高网络的特征提取能力,减少复杂环境中的背景干扰问题;最后在特征融合网络中构建新型的双向特征金字塔结构,充分利用低层级特征以降低浅层语义信息的丢失,提高小尺度手势的检测精度,同时采用跨层级联的方式,进一步提高模型的检测效率。为了验证改进方法的有效性,分别在具有丰富光照强度对比的自制数据集和具有复杂背景的公共数据集NUS-Ⅱ上进行实验,识别率达到了99.5%和98.9%,单帧照片的检测时间仅需0.01~0.02 s。  相似文献   

16.
交通标志检测在自动驾驶、辅助驾驶等领域是一个重要的环节,关乎到行车安全问题。针对交通标志中存在目标小、背景复杂等难点,提出一种基于改进YOLOv5的算法。提出区域上下文模块,利用多种扩张率的空洞卷积来获取不同感受野,进而获取到目标及其相邻区域的特征信息,相邻区域的信息对交通标志小目标检测起到重要补充作用,可以有效解决目标小的问题;在主干部分引入特征增强模块,进一步提高主干的特征提取能力,利用注意力机制与原C3模块结合,使网络更能聚焦小目标信息,避免复杂背景的干扰;在多尺度检测部分,将浅层特征层与深层检测层进行特征融合,可以同时兼顾浅层位置信息与深层语义信息,增加目标定位与边界回归的准确度,更有利于小目标检测。实验结果表明,改进后的算法在交通标志检测数据集TT100K上取得了87.2%的小目标检测精度、92.4%的小目标召回率以及91.8%的mAP,与原YOLOv5算法相比较,分别提升了3.5、4.1、2.6个百分点,检测速度83.3 frame/s;在CCTSDB数据集上mAP为98.0%,提升了2.0个百分点,检测速度90.9 frame/s。因此,提出的改进YOLOv5算法可以有效...  相似文献   

17.
在服务机器人执行任务的过程中,对周围环境中的物体进行快速且准确的目标识别是提升机器人智能度的重要突破口.针对家庭服务机器人竞赛,提出一种目标识别算法,使用轻量级网络MobileNetv2替换YOLOv5的主干特征提取网络,实验证明该识别算法在快速性和准确性方面有一定的提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号