首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The extent of the peril associated with cancer can be perceived from the lack of treatment, ineffective early diagnosis techniques, and most importantly its fatality rate. Globally, cancer is the second leading cause of death and among over a hundred types of cancer; lung cancer is the second most common type of cancer as well as the leading cause of cancer-related deaths. Anyhow, an accurate lung cancer diagnosis in a timely manner can elevate the likelihood of survival by a noticeable margin and medical imaging is a prevalent manner of cancer diagnosis since it is easily accessible to people around the globe. Nonetheless, this is not eminently efficacious considering human inspection of medical images can yield a high false positive rate. Ineffective and inefficient diagnosis is a crucial reason for such a high mortality rate for this malady. However, the conspicuous advancements in deep learning and artificial intelligence have stimulated the development of exceedingly precise diagnosis systems. The development and performance of these systems rely prominently on the data that is used to train these systems. A standard problem witnessed in publicly available medical image datasets is the severe imbalance of data between different classes. This grave imbalance of data can make a deep learning model biased towards the dominant class and unable to generalize. This study aims to present an end-to-end convolutional neural network that can accurately differentiate lung nodules from non-nodules and reduce the false positive rate to a bare minimum. To tackle the problem of data imbalance, we oversampled the data by transforming available images in the minority class. The average false positive rate in the proposed method is a mere 1.5 percent. However, the average false negative rate is 31.76 percent. The proposed neural network has 68.66 percent sensitivity and 98.42 percent specificity.  相似文献   

2.
    
Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the selected apple dataset. After that, two pre-trained deep models are fine-tuning and trained using transfer learning. Then, a fusion technique is proposed named Parallel Correlation Threshold (PCT). The fused feature vector is optimized in the next step using a hybrid optimization algorithm. The selected features are finally classified using machine learning algorithms. Four different experiments have been carried out on the augmented Plant Village dataset and yielded the best accuracy of 99.8%. The accuracy of the proposed framework is also compared to that of several neural nets, and it outperforms them all.  相似文献   

3.
    
Lip-reading technologies are rapidly progressing following the breakthrough of deep learning. It plays a vital role in its many applications, such as: human-machine communication practices or security applications. In this paper, we propose to develop an effective lip-reading recognition model for Arabic visual speech recognition by implementing deep learning algorithms. The Arabic visual datasets that have been collected contains 2400 records of Arabic digits and 960 records of Arabic phrases from 24 native speakers. The primary purpose is to provide a high-performance model in terms of enhancing the preprocessing phase. Firstly, we extract keyframes from our dataset. Secondly, we produce a Concatenated Frame Images (CFIs) that represent the utterance sequence in one single image. Finally, the VGG-19 is employed for visual features extraction in our proposed model. We have examined different keyframes: 10, 15, and 20 for comparing two types of approaches in the proposed model: (1) the VGG-19 base model and (2) VGG-19 base model with batch normalization. The results show that the second approach achieves greater accuracy: 94% for digit recognition, 97% for phrase recognition, and 93% for digits and phrases recognition in the test dataset. Therefore, our proposed model is superior to models based on CFIs input.  相似文献   

4.
    
Nowadays, the amount of wed data is increasing at a rapid speed, which presents a serious challenge to the web monitoring. Text sentiment analysis, an important research topic in the area of natural language processing, is a crucial task in the web monitoring area. The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data. Deep learning is a hot research topic of the artificial intelligence in the recent years. By now, several research groups have studied the sentiment analysis of English texts using deep learning methods. In contrary, relatively few works have so far considered the Chinese text sentiment analysis toward this direction. In this paper, a method for analyzing the Chinese text sentiment is proposed based on the convolutional neural network (CNN) in deep learning in order to improve the analysis accuracy. The feature values of the CNN after the training process are nonuniformly distributed. In order to overcome this problem, a method for normalizing the feature values is proposed. Moreover, the dimensions of the text features are optimized through simulations. Finally, a method for updating the learning rate in the training process of the CNN is presented in order to achieve better performances. Experiment results on the typical datasets indicate that the accuracy of the proposed method can be improved compared with that of the traditional supervised machine learning methods, e.g., the support vector machine method.  相似文献   

5.
    
《Advanced Powder Technology》2021,32(10):3885-3903
Mineral image segmentation plays a vital role in the realization of machine vision based intelligent ore sorting equipment. However, the existing image segmentation methods still cannot effectively solve the problem of adhesion and overlap between mineral particles, and the segmentation performance of small and irregular particles still needs to be improved. To overcome these bottlenecks, we propose a deep learning based image segmentation method to segment the key areas in mineral images using morphological transformation to process mineral image masks. This investigation explores four aspects of the deep learning-based mineral image segmentation model, including backbone selection, module configuration, loss function construction, and its application in mineral image classification. Specifically, referring to the designs of U-Net, FCN, Seg Net, PSP Net, and DeepLab Net, this experiment uses different backbones as Encoder to building ten mineral image segmentation models with different layers, structures, and sampling methods. Simultaneously, we propose a new loss function suitable for mineral image segmentation and compare CNNs-based segmentation models' training performance under different loss functions. The experiment results show that the proposed mineral image segmentation has excellent segmentation performance, effectively solves adhesion and overlap between adjacent particles without affecting the classification accuracy. By using the Mobile Net as backbone, the PSP Net and DeepLab can achieve a high segmentation performance in mineral image segmentation tasks, and the 15 × 15 is the most suitable size for erosion element structure to process the mask images of the segmentation models.  相似文献   

6.
    
Manufacturing is undergoing transformation driven by the developments in process technology, information technology, and data science. A future manufacturing enterprise will be highly digital. This will create opportunities for machine learning algorithms to generate predictive models across the enterprise in the spirit of the digital twin concept. Convolutional and generative adversarial neural networks have received some attention of the manufacturing research community. Representative research and applications of the two machine learning concepts in manufacturing are presented. Advantages and limitations of each neural network are discussed. The paper might be helpful in identifying research gaps, inspire machine learning research in new manufacturing domains, contribute to the development of successful neural network architectures, and getting deeper insights into the manufacturing data.  相似文献   

7.
    
We propose to perform an image-based framework for electrical energy meter reading. Our aim is to extract the image region that depicts the digits and then recognize them to record the consumed units. Combining the readings of serial numbers and energy meter units, an automatic billing system using the Internet of Things and a graphical user interface is deployable in a real-time setup. However, such region extraction and character recognition become challenging due to image variations caused by several factors such as partial occlusion due to dust on the meter display, orientation and scale variations caused by camera positioning, and non-uniform illumination caused by shades. To this end, our work evaluates and compares the state-of-the art deep learning algorithm You Only Look Once (YOLO ) along with traditional handcrafted features for text extraction and recognition. Our image dataset contains 10,000 images of electrical energy meters and is further expanded by data augmentation such as in-plane rotation and scaling to make the deep learning algorithms robust to these image variations. For training and evaluation, the image dataset is annotated to produce the ground truth of all the images. Consequently, YOLO achieves superior performance over the traditional handcrafted features with an average recognition rate of 98% for all the digits. It proves to be robust against the mentioned image variations compared with the traditional handcrafted features. Our proposed method can be highly instrumental in reducing the time and effort involved in the current meter reading, where workers visit door to door, take images of meters and manually extract readings from these images.  相似文献   

8.
    
Software-defined networking (SDN) represents a paradigm shift in network traffic management. It distinguishes between the data and control planes. APIs are then used to communicate between these planes. The controller is central to the management of an SDN network and is subject to security concerns. This research shows how a deep learning algorithm can detect intrusions in SDN-based IoT networks. Overfitting, low accuracy, and efficient feature selection is all discussed. We propose a hybrid machine learning-based approach based on Random Forest and Long Short-Term Memory (LSTM). In this study, a new dataset based specifically on Software Defined Networks is used in SDN. To obtain the best and most relevant features, a feature selection technique is used. Several experiments have revealed that the proposed solution is a superior method for detecting flow-based anomalies. The performance of our proposed model is also measured in terms of accuracy, recall, and precision. F1 rating and detection time Furthermore, a lightweight model for training is proposed, which selects fewer features while maintaining the model’s performance. Experiments show that the adopted methodology outperforms existing models.  相似文献   

9.
    
Optical deep learning based on diffractive optical elements offers unique advantages for parallel processing, computational speed, and power efficiency. One landmark method is the diffractive deep neural network (D2NN) based on three-dimensional printing technology operated in the terahertz spectral range. Since the terahertz bandwidth involves limited interparticle coupling and material losses, this paper extends D2NN to visible wavelengths. A general theory including a revised formula is proposed to solve any contradictions between wavelength, neuron size, and fabrication limitations. A novel visible light D2NN classifier is used to recognize unchanged targets (handwritten digits ranging from 0 to 9) and targets that have been changed (i.e., targets that have been covered or altered) at a visible wavelength of 632.8 nm. The obtained experimental classification accuracy (84%) and numerical classification accuracy (91.57%) quantify the match between the theoretical design and fabricated system performance. The presented framework can be used to apply a D2NN to various practical applications and design other new applications.  相似文献   

10.
    
Software defect prediction plays a very important role in software quality assurance, which aims to inspect as many potentially defect-prone software modules as possible. However, the performance of the prediction model is susceptible to high dimensionality of the dataset that contains irrelevant and redundant features. In addition, software metrics for software defect prediction are almost entirely traditional features compared to the deep semantic feature representation from deep learning techniques. To address these two issues, we propose the following two solutions in this paper: (1) We leverage a novel non-linear manifold learning method - SOINN Landmark Isomap (SLIsomap) to extract the representative features by selecting automatically the reasonable number and position of landmarks, which can reveal the complex intrinsic structure hidden behind the defect data. (2) We propose a novel defect prediction model named DLDD based on hybrid deep learning techniques, which leverages denoising autoencoder to learn true input features that are not contaminated by noise, and utilizes deep neural network to learn the abstract deep semantic features. We combine the squared error loss function of denoising autoencoder with the cross entropy loss function of deep neural network to achieve the best prediction performance by adjusting a hyperparameter. We compare the SL-Isomap with seven state-of-the-art feature extraction methods and compare the DLDD model with six baseline models across 20 open source software projects. The experimental results verify that the superiority of SL-Isomap and DLDD on four evaluation indicators.  相似文献   

11.
目的 将深度学习与社交网络、情感计算相结合,探索利用深度神经网络进行社交网络用户情感研究的新方法和新技术,探索模型在用户需求分析和推荐上的应用.方法 自动筛选和挖掘海量社交网络数据,研究具有长时记忆的非先验情感预测方法,对网络中海量的用户数据、人与人之间关系进行建模,为关联时间序列创建LSTM模型,并结合其相互关系融入统一的大型深度循环网络中.具体包括:基于注意力模型的社交网络异构数据处理;基于深度LSTM的长时记忆建模,研究子网络选取、深度LSTM设计,以及针对社交网络的大型网络结构设计;基于社交网络情感模型和强化学习的推荐算法.结果 提高了分析的准确度,降低了对先验假设的依赖,减轻了人工情感模型的工作量和偏差,增强了对不同网络数据的普适性;供深度模型使用.结论 研究成果促进了深度学习与情感计算的结合,可推动网络用户行为分析和预测的研究,可用于个性化推荐、定向广告等领域,具有广泛的学术意义和应用前景.  相似文献   

12.
验证码是一种区分用户是计算机还是人的公共全自动程序.为了尽可能大批量地获取某网站的信息,就需要让机器可以全自动地识别该网站的验证码.为了破解验证码,对深度学习的验证码图像识别方法进行了研究.提出使用图像标注的方法来生成验证码图像中的字母序列.实验采用深度学习框架Caffe,将卷积神经网络与循环神经网络相结合进行训练.将卷积神经网络的输出用于训练循环神经网络,来不断地预测出序列中下一个最有可能出现的字母.训练的目标是将输出的词尽量和预期的词一致.测试结果表明,该模型能够对该网站的验证码图像做到97%的识别准确率.该方法比只采用卷积神经网络进行识别效果好.  相似文献   

13.
目的为解决GDX1包装机MICROⅡ控制系统维修成本高、故障率较高、系统开放性差、数据采集困难、制约工业和信息化融合等问题,设计一套GDX1包装机IPC控制系统。方法 GDX1包装机控制系统通过IPC分布式电控系统改造,实现分布式采集+集中管控+数据交互的包装机IPC控制。结果该控制系统改造后,采用EtherCAT总线及高速处理模块,实现了100M高速数据传输速度;采用TWINCAT3的多核多线程处理技术,使数据采集速率提升了715%;采用PID算法的热封器温度控制,将实时温差控制在-3~3℃以内。结论 IPC控制系统改进后,实现了对各种检测信号、安全信号等点对点的准确采集,降低了因线路接点引起故障停机的概率,提高了设备运行的稳定性,提升了设备的有效作业率,使得车间信息化底层数据的准确性、稳定性得到了保证,完成了工业化与信息化的融合,实现了设备智能化,该系统和技术可推广应用于行业内所有包装设备上。  相似文献   

14.
    
Molecules composed of atoms exhibit properties not inherent to their constituent atoms. Similarly, metamolecules consisting of multiple meta-atoms possess emerging features that the meta-atoms themselves do not possess. Metasurfaces composed of metamolecules with spatially variant building blocks, such as gradient metasurfaces, are drawing substantial attention due to their unconventional controllability of the amplitude, phase, and frequency of light. However, the intricate mechanisms and the large degrees of freedom of the multielement systems impede an effective strategy for the design and optimization of metamolecules. Here, a hybrid artificial-intelligence-based framework consolidating compositional pattern-producing networks and cooperative coevolution to resolve the inverse design of metamolecules in metasurfaces is proposed. The framework breaks the design of the metamolecules into separate designs of meta-atoms, and independently solves the smaller design tasks of the meta-atoms through deep learning and evolutionary algorithms. The proposed framework is leveraged to design metallic metamolecules for arbitrary manipulation of the polarization and wavefront of light. Moreover, the efficacy and reliability of the design strategy are confirmed through experimental validations. This framework reveals a promising candidate approach to expedite the design of large-scale metasurfaces in a labor-saving, systematic manner.  相似文献   

15.
    
We show that deep convolutional neural networks (CNNs) can massively outperform traditional densely connected neural networks (NNs) (both deep or shallow) in predicting eigenvalue problems in mechanics. In this sense, we strike out in a new direction in mechanics computations with strongly predictive NNs whose success depends not only on architectures being deep but also being fundamentally different from the widely used to date. We consider a model problem: predicting the eigenvalues of one-dimensional (1D) and two-dimensional (2D) phononic crystals. For the 1D case, the optimal CNN architecture reaches 98% accuracy level on unseen data when trained with just 20 000 samples, compared to 85% accuracy even with 100 000 samples for the typical network of choice in mechanics research. We show that, with relatively high data efficiency, CNNs have the capability to generalize well and automatically learn deep symmetry operations, easily extending to higher dimensions and our 2D case. Most importantly, we show how CNNs can naturally represent mechanical material tensors, with its convolution kernels serving as local receptive fields, which is a natural representation of mechanical response. Strategies proposed are applicable to other mechanics' problems and may, in the future, be used to sidestep cumbersome algorithms with purely data-driven approaches based upon modern deep architectures.  相似文献   

16.
    
In this paper, we discuss the inextricable link between automating training environment adaptation and deep understanding of the context surrounding specific decisions and actions executed in the performance environment. To enable deep contextual understanding, psychological measurement strategies are needed to more accurately and rapidly model the psychologically meaningful details of the trainee's interactions with events, objects, and people in the training environment. As these interactions often entail complex, nonlinear cue-action relationships, the underlying models must effectively capture the nuance, complexity, and largely intuitive nature of human decision-making. This paper discusses the promise of an emerging field of machine learning – deep neural networks – for supporting this requirement.  相似文献   

17.
    
This study presents a hybrid learning neural fuzzy system for accurately predicting system reliability. Neural fuzzy system learning with and without supervision has been successfully applied in control systems and pattern recognition problems. This investigation modifies the hybrid learning fuzzy systems to accept time series data and therefore examines the feasibility of reliability prediction. Two neural network systems are developed for solving different reliability prediction problems. Additionally, a scaled conjugate gradient learning method is applied to accelerate the training in the supervised learning phase. Several existing approaches, including feed‐forward multilayer perceptron (MLP) networks, radial basis function (RBF) neural networks and Box–Jenkins autoregressive integrated moving average (ARIMA) models, are used to compare the performance of the reliability prediction. The numerical results demonstrate that the neural fuzzy systems have higher prediction accuracy than the other methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
汪荣贵  姚旭晨  杨娟  薛丽霞 《光电工程》2019,46(6):180416-1-180416-10
现有的细粒度分类模型不仅利用图像的类别标签,还使用大量人工标注的额外信息。为解决该问题,本文提出一种深度迁移学习模型,将大规模有标签细粒度数据集上学习到的图像特征有效地迁移至微型细粒度数据集中。首先,通过衔接域定量计算域间任务的关联度。然后,根据关联度选择适合目标域的迁移特征。最后,使用细粒度数据集视图类标签进行辅助学习,通过联合学习所有属性来获取更多的特征表示。实验表明,本文方法不仅可以获得较高精度,而且能够有效减少模型训练时间,同时也验证了进行域间特征迁移可以加速网络学习与优化这一结论。  相似文献   

19.
    
The detection of alcoholism is of great importance due to its effects on individuals and society. Automatic alcoholism detection system (AADS) based on electroencephalogram (EEG) signals is effective, but the design of a robust AADS is a challenging problem. AADS’ current designs are based on conventional, hand-engineered methods and restricted performance. Driven by the excellent deep learning (DL) success in many recognition tasks, we implement an AAD system based on EEG signals using DL. A DL model requires huge number of learnable parameters and also needs a large dataset of EEG signals for training which is not easy to obtain for the AAD problem. In order to solve this problem, we propose a multi-channel Pyramidal neural convolutional (MP-CNN) network that requires a less number of learnable parameters. Using the deep CNN model, we build an AAD system to detect from EEG signal segments whether the subject is alcoholic or normal. We validate the robustness and effectiveness of proposed AADS using KDD, a benchmark dataset for alcoholism detection problem. In order to find the brain region that contributes significant role in AAD, we investigated the effects of selected 19 EEG channels (SC-19), those from the whole brain (ALL-61), and 05 brain regions, i.e., TEMP, OCCIP, CENT, FRONT, and PERI. The results show that SC-19 contributes significant role in AAD with the accuracy of 100%. The comparison reveals that the state-of-the-art systems are outperformed by the AADS. The proposed AADS will be useful in medical diagnosis research and health care systems.  相似文献   

20.
    
This research combines deep neural network (DNN) and Markov decision processes (MDP) for the dynamic dispatching of re-entrant production systems. In re-entrant production systems, jobs enter the same workstation multiple times and dynamic dispatching oftentimes aims to dynamically assign different priorities to various job groups to minimise weighted cycle time or maximise throughput. MDP is an effective tool for dynamic production control, but it suffers from two major challenges in dynamic control problems. First, the curse of dimensionality limits the computational performance of solving large MDP problems. Second, a different model should be built and solved after system configuration is changed. DNN is used to overcome both challenges by learning directly from optimal dispatching policies generated by MDP. Results suggest that a properly trained DNN model can instantly generate near-optimal dynamic control policies for large problems. The quality of the DNN solution is compared with the optimal dynamic control policies through the standard K-fold cross-validation test and discrete event simulation. On average, the performance of the DNN policy is within 2% of optimal in both tests. The proposed artificial intelligence algorithm illustrates the potential of machine learning methods in manufacturing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号