首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
“行程码”的有效使用需要解决图像模糊、网络权重大等问题。本文提出一种基于损失函数改进的轻量化模型LL_YOLO(Lightweight Loss YOLO)。LL_YOLO基于YOLOv5模型,通过接口在线调用图像增强函数进行画质增强、改进损失函数,提高检测精度,轻量化压缩模型。实验结果表明,LL_YOLO在图像增强与损失函数模块等的作用下,识别精度提高到91.82%,参数量降低为2.8M。因此LL_YOLO具有低参数量和计算量的优势,对高算力硬件的依赖性低,能够极大地降低应用部署成本。  相似文献   

2.
潘毅  王丽萍 《计算机科学》2022,(10):198-206
当前,以卷积神经网络为基础的目标检测算法大多存在缺少对有价值的上下文信息的合理利用以及易对困难目标漏检等问题。针对这些问题,提出了一种基于改进拆分注意力网络的目标检测算法。首先,引入拆分注意力机制,将多通道结构与注意力机制相结合,提升其特征表示。然后,在网络的卷积层中使用多尺度卷积取代传统的卷积操作,增强了神经网络对尺度变化的敏感性。最后,将改进的网络应用于Faster R-CNN中,并在Pascal VOC数据集和MS COCO数据集上进行实验。所提算法在不增加超参数量及计算复杂度的情况下,其mAP相较于原始算法分别提升了1.6%和2.4%,且对比其他算法也有所优势,验证了所提算法的良好性能。  相似文献   

3.
李翠锦  瞿中 《计算机应用》2005,40(11):3280-3288
边缘检测是将图像中的突变的重要信息提取出来的过程,是计算机视觉领域研究热点,也是图像分割、目标检测与识别等多种中高层视觉任务的基础。近几年来,针对边缘轮廓线过粗以及检测精度不高等问题,业内提出了谱聚类、多尺度融合、跨层融合等基于深度学习的边缘检测算法。为了使更多研究者了解边缘检测的研究现状,首先,介绍了传统边缘检测的实现理论及方法;然后,总结了近年来基于深度学习的主要边缘检测方法,并依据实现技术对这些方法进行了分类,对其涉及的关键技术进行分析,发现对多尺度多层次融合与损失函数的选择是重要的研究方向。通过评价指标对各类方法进行了比较,可知边缘检测算法在伯克利大学数据集(BSDS500)上的最优数据集规模(ODS)经过多年研究从0.598提高到了0.828,接近人类视觉水平。最后,展示了边缘检测算法研究的发展方向。  相似文献   

4.
李翠锦  瞿中 《计算机应用》2020,40(11):3280-3288
边缘检测是将图像中的突变的重要信息提取出来的过程,是计算机视觉领域研究热点,也是图像分割、目标检测与识别等多种中高层视觉任务的基础。近几年来,针对边缘轮廓线过粗以及检测精度不高等问题,业内提出了谱聚类、多尺度融合、跨层融合等基于深度学习的边缘检测算法。为了使更多研究者了解边缘检测的研究现状,首先,介绍了传统边缘检测的实现理论及方法;然后,总结了近年来基于深度学习的主要边缘检测方法,并依据实现技术对这些方法进行了分类,对其涉及的关键技术进行分析,发现对多尺度多层次融合与损失函数的选择是重要的研究方向。通过评价指标对各类方法进行了比较,可知边缘检测算法在伯克利大学数据集(BSDS500)上的最优数据集规模(ODS)经过多年研究从0.598提高到了0.828,接近人类视觉水平。最后,展示了边缘检测算法研究的发展方向。  相似文献   

5.
改进YOLO轻量化网络的口罩检测算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对目前YOLO轻量网络在口罩佩戴检测任务中出现的特征提取不足和特征利用率不高的问题,提出了一种基于改进YOLOv4-tiny的轻量化网络算法.增加Max Module结构以获取更多目标的主要特征,提高检测准确率.提出自下而上的多尺度融合,结合低层信息丰富网络的特征层次,提高特征利用率.使用CIoU作为边框回归损失函数...  相似文献   

6.
为了解决传统特征提取方法在遥感图像中飞机检测准确率和实时性不足的问题,基于YOLOv3-tiny网络在准确率提升方面提出两点改进。改进点一:将网络提取图像特征点的方式改进为分组卷积,即将一幅图像分成三个通道进行卷积操作,配合通道特征变换以加强各通道之间的语义关联;改进点二:将网络深层特征增加一个尺度检测,并进行上采样与浅层特征图进行融合预测。在速度提升方面引入深度可分离卷积代替传统卷积以降低参数计算量,达到模型轻量化。根据改进后的网络提出一种包含33个卷积层的改进型卷积神经网络DS-YOLO,对改进前后网络分别在自制遥感飞机图像上进行训练,选出最优的权重,用来对目标小、曝光度高、背景干扰等低质量测试集进行测试分析。实验结果表明,改进后的算法在测试集上精准度提升了14.1%,召回率提升了16.8%,检测低质量遥感飞机图像效果更佳。  相似文献   

7.
张艳  杜会娟  孙叶美  李现国 《计算机工程》2021,47(9):252-258,265
在遥感图像目标检测领域,多数目标检测算法针对小目标检测时效果不佳,为此,提出一种多尺度特征融合的遥感图像目标检测算法。利用SSD算法的基础网络进行特征提取,形成特征图金字塔。设计特征图融合模块,融合浅层特征图的位置信息和深层特征图的语义信息,从而保留丰富的上下文信息。设计冗余信息去除模块,通过卷积操作进一步提取特征图中的特征,并对特征信息进行筛选,以减少特征图融合时带来的混叠效应。在遥感图像数据集NWPU VHR-10上的实验结果表明,该算法的平均检测精度高达93.9%,其针对遥感图像小目标的检测性能优于Faster R-CNN和SSD等算法。  相似文献   

8.
由于安防设备硬件条件等因素制约,在视频监控场景下的低清人脸检测中注重模型在检测精度、速度以及占用内存大小等方面的权衡已然是必须考虑的问题。针对此问题,将可变形卷积(Deformable convolution,DC)和Lambda层进行融合,提出一种轻型尺度自适应深度网络的低清人脸检测模型DLFace。首先借鉴RetinaFace算法,使用改进后的深度可分离卷积能够有效防止训练过程中信息丢失;其次将改进后的可变形卷积引入骨干网络和SSH (Single stage headless) 检测模块,通过增强感受野适应人脸多因素的变化;最后在骨干网络高层引入Lambda层,有效挖掘语义和位置信息,形成更加丰富的特征表示。在WiderFace数据集上的实验结果表明,DLFace实现了性能和速度的平衡,在不同场景下均验证了DLFace的优越性,表明DLFace能较好地适用于视频监控场景下的低清人脸检测任务。  相似文献   

9.
邓忠豪  陈晓东 《计算机应用》2019,39(7):2109-2115
在传统的肺结节检测算法中,存在检测敏感度低,假阳性数量大的问题。针对这一问题,提出了基于深度卷积神经网络(CNN)的肺结节检测算法。首先,有目的性地简化传统的全卷积分割网络;然后,创新地加入对部分CNN层的深监督并使用改进的加权损失函数,获得高质量的候选肺结节,保证高敏感度;其次,设计了基于多尺度上下文信息的三维深度CNN来增强对图像的特征提取;最后,将训练得到的融合分类模型用于候选结节分类,以达到降低假阳率的目的。所提算法使用了LUNA16数据集,并通过对比实验验证算法的性能。在检测阶段,当每个CT检测出的候选结节数为50.2时,获得的敏感度为94.3%,与传统的全卷积分割网络相比提升了4.2个百分点;在分类阶段,竞争性能指标达到0.874。实验结果表明,所提算法能够有效提高检测敏感度和降低假阳率。  相似文献   

10.
11.
12.
针对遥感图像中飞机目标检测精度低、检测速度慢、背景复杂等问题,提出了一种基于深度学习的改进YOLOv4目标检测算法.改进YOLOv4的主干特征提取网络,保留高分辨率的特征层,去除了用于检测大目标的特征层,减少语义丢失.在卷积神经网络中使用DenseNet(密集连接网络)加强对飞机目标的特征提取,减少梯度消失问题.对数据...  相似文献   

13.
针对遥感图像中建筑物检测存在小型建筑物检测难度大、检测过程中无法满足实时性等问题,提出将基于深度学习的目标检测算法Yolo v3应用到建筑物检测场景中。以实时性及泛用性良好的Yolo v3为基本算法,满足实时性的要求;通过改进Yolo v3的网络结构,以修改特征图分辨率、调整先验框维度为方向加强对小型建筑物的检测能力。实验结果表明,改进的Yolo v3目标检测算法既满足了实时性的要求,且检测精度和召回率达到了91.29%和95.61%,较原算法分别提高了5.35%和2.34%。因此提出的改进方法有效解决了遥感领域小型建筑物的检测问题。  相似文献   

14.
针对当前遥感影像背景复杂、目标尺度小等情况导致的检测精度偏低的问题,基于FCOS网络提出了一种结合位置注意力和感受野增强的遥感影像目标检测算法PARF-FCOS;该算法构造了一种位置注意力模块,并利用该模块对特征提取网络进行改进,增强网络对目标信息的提取能力;在特征融合阶段使用感受野模块(RFB, receptive field block)增强浅层特征图,利用目标上下文信息进行辅助判断,提升网络对小尺度目标的检测能力;在训练过程中,引入距离交并比损失(DIoU loss,distance intersection over union loss)进行边界框回归,通过优化目标框与预测框中心点之间的距离,使回归过程更加平稳和准确;在公开数据集DIOR上评估了PARF-FCOS目标检测算法,实验结果表明,相较于原始FCOS,算法的平均精确度均值提高了4.3%,达到70.4%,检测速度达到23.2FPS。  相似文献   

15.
针对于遥感图像中背景复杂噪声多、小目标多且排布密集、目标尺度差异大等问题,提出了一种改进通道注意力与残差收缩网络的遥感图像目标检测算法。该算法借助卷积神经网络,以YOLOV3模型作为基础网络,选择Mosaic图像增强的方式进行数据预处理,采用深度残差收缩模块重构了特征提取网络,并结合通道注意力机制与组合池化构建空间金字塔池化融合层,采用CIOU进行定位损失计算,最终实现遥感图像目标检测。实验结果表明:改进算法相比于原算法的总体mAP由89.2%提升至92.2%,获得了更好的性能表现。  相似文献   

16.
针对目前在遥感目标检测领域广泛使用的YOLOv3算法存在对小目标物体的特征表达能力不足,检测效果不好的问题,本文提出一种改进的YOLOv3小目标检测算法.首先,引入全局信息注意力机制并改进特征提取网络和特征金字塔结构,提高模型小目标特征提取能力和检测能力;其次,对数据集进行单尺度Retinex融合特征增强,提高模型对小目标特征的学习效果;最后,使用自适应锚框优化算法对anchors进行优化,提高anchors和目标的匹配程度.选用遥感数据集RSOD进行实验,本文算法的全类平均精度为92.5%,相比经典YOLOv3算法,提高10.1%,对遥感小目标的检测效果得到明显提升.  相似文献   

17.
针对传统飞机检测算法特征学习能力较弱,在背景复杂、目标密集、成像质量较差的遥感影像上检测精度较低的问题,提出了 一种基于Faster-RCNN(Faster-Regions with Convolutional Neural Network)框架的遥感影像飞机检测优化算法.以ResNet50为基础特征提取网络,引入空洞...  相似文献   

18.
针对现有分类器对遥感影像分类结果存不准确的问题,本文提出了一种基于决策树分类器的遥感影像分类方法,该方法以复合决策树Boost Tree思想为基础,首先利用分形理论中的毯模型提取遥感影像的纹理特征,根据遥感影像分类的特点,构造新的单棵决策树生成算法对遥感影像进行分类。以北京市五环内区域为研究区,使用landsat7 ETM数据源,实现了基于分形纹理特征、光谱特征的改进决策树分类。实验结果表明:通过毯模型提取的纹理特征可以很好地表达表面特征,辅以该纹理信息的改进决策树分类精度相比于只用光谱信息进行分类的精度有一定的提高,改善了分类效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号