首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 812 毫秒
1.
采用混掺聚甲醛(POM)纤维和玄武岩纤维(BF)的方法制备了一种多尺度纤维混杂体系的复合材料,研究了其抗折强度、抗压强度、弯曲韧性及直接拉伸强度等基本力学性能,并通过扫描电子显微镜和数码电子显微镜对其微观结构进行分析。抗折、抗压强度试验结果表明,混掺两种纤维试样的抗折强度和早期抗压强度均明显优于单掺POM纤维试样,然而,28 d抗压强度有小幅下降;三点弯曲试验结果表明,单掺POM纤维可以改善水泥基材料的韧性并提高材料的等效弯曲强度,混掺BF后,等效弯曲强度进一步提高。微观分析结果表明,POM纤维和BF与基体结合紧密,两种纤维在宏观和微观尺度上均起到协同作用,共同发挥阻止裂纹扩展的作用,从而改善水泥基复合材料的韧性并提高强度。  相似文献   

2.
高强砂浆是制备结构修补砂浆、灌浆料和超高性能纤维增强混凝土(UHPC)的基础,通过研究聚丙烯纤维长度和掺量对高强砂浆流动度和抗折抗压强度的影响,得出聚丙烯纤维在高强砂浆中的应用经验。研究表明:随着聚丙烯纤维掺量增加导致高强砂浆的流动度降低,1 d抗折强度和抗压强度提升明显;高强砂浆中聚丙烯纤维合理掺量为0.225%,最佳长度为6~10 mm。  相似文献   

3.
以高石粉含量机制砂砂浆为研究对象,分析了海泡石纤维体积掺量和长度的变化对砂浆力学性能和干燥收缩的影响规律,并使用压汞仪和扫描电子显微镜研究了砂浆内部孔结构和微观形貌的变化特征。结果表明:适宜体积掺量的短海泡石纤维可显著改善砂浆的抗压强度、抗折强度和抗干燥收缩能力。与空白组相比,长度为1 mm的纤维体积掺量为1.5%时,试件28 d抗压强度和抗折强度分别提高98.9%和36.2%;长度为1 mm的纤维体积掺量为2.0%时,28 d自然干燥收缩值降低72.1%。海泡石纤维试件内部形成了大量针棒状钙矾石和片状氢氧化钙晶体,有效提高了砂浆硬化体系的密实性,砂浆总孔隙率与纤维掺量成反比。  相似文献   

4.
张成龙  刘漪  张明 《硅酸盐通报》2021,40(7):2174-2183
针对交通压力增大,公路桥梁路面易出现疲劳破坏的问题,提出以聚丙烯(PP)纤维与聚乙烯醇(PVA)纤维提升硫铝酸盐水泥基快速修补材料性能。分别探究了PP纤维与PVA纤维单掺及复掺对硫铝酸盐水泥基快速修补材料流动度、强度以及韧性的影响,并进一步研究了最优复掺比例对修补材料粘结强度及体积稳定性的影响。结果表明:单掺PP纤维对修补材料砂浆流动度影响较小,并且能显著提升抗折强度,掺入0.2%(体积分数,下同)的PP纤维流动度仅下降4%,1 d和28 d抗折强度分别达到了12.8 MPa、15.5 MPa。单掺PVA纤维会大幅减小修补材料砂浆流动度,提升抗压强度,掺入0.2%的PVA纤维流动度下降21%,1 d和28 d抗压强度分别达到了56.6 MPa、84.3 MPa。当PP和PVA纤维按3:1的比例,以0.2%的总体积掺量进行复掺时,两种纤维可以发挥协同作用使修补材料不仅可以获得良好的流动性能、强度与韧性,同时获得较好粘结强度与体积稳定性。28 d时修补材料砂浆的粘结强度达到5.6 MPa,干燥收缩率低至2.73×10-4,可以更好地满足公路桥梁路面、伸缩缝的快速修补需求。  相似文献   

5.
龚建清  董雅竹  张浩  涂贞军  戴炜 《硅酸盐通报》2022,41(12):4361-4368
采用玻璃砂代替部分细骨料制备碱激发矿渣(AAS)砂浆后,研究了玻璃砂含量(0%、10%、20%、30%,质量分数)对AAS砂浆抗压强度、抗折强度、干燥收缩、导热系数和碱-硅酸反应(ASR)膨胀率的影响,并通过扫描电子显微镜(SEM)对微观机理进行了分析。结果表明:掺10%~30%的玻璃砂能显著提高AAS砂浆的早期抗压强度,但会略微降低28 d抗压强度;AAS砂浆的抗折强度随玻璃砂掺量的增加先增大后减小,10%掺量时最有利于3 d抗折强度,20%掺量时最有利于28 d抗折强度;AAS砂浆的干燥收缩、导热系数和ASR膨胀率均随玻璃砂掺量的增加而减小,与对照组相比,掺30%玻璃砂的AAS砂浆导热系数降低14.4%,56 d干燥收缩率降低27.6%,14 d ASR膨胀率降低39.6%,28 d ASR膨胀率降低34.5%;SEM分析发现玻璃砂表面有水化产物生成,其与胶凝材料的结合比石英砂更紧密,使AAS砂浆的微观结构更加致密。  相似文献   

6.
温湿度变化、胶凝材料本身变形和结构的约束是引起外墙砂浆开裂的主要原因,研究了3 mm短切耐碱玻璃纤维和可分散胶粉的掺入及掺量对砂浆抗折强度、抗压强度、弹性模量和干燥收缩性能的影响,并制备了914 mm×610 mm×19 mm的自由大板和内环约束的φ650 mm×φ800 mm×100 mm试件进行了室外暴露试验.结果表明纤维的掺入能够有效提高砂浆的抗折强度并降低干燥收缩,而胶粉掺入会降低28 d抗压强度并增加砂浆的干燥收缩,但能够降低砂浆的弹性模量,从而提高砂浆的韧性;室外暴露试验显示掺入复合掺入1%纤维和2%的胶粉能够明显提高砂浆的抗裂性能.  相似文献   

7.
魏阔  刘斯凤 《硅酸盐通报》2022,41(7):2244-2250
本文研究了温度为20 ℃,相对湿度为90%(RH90%)和60%(RH60%)时,硫铝酸钙膨胀剂(CSA)与氧化镁膨胀剂(MEA)对丁苯乳液改性砂浆的工作性能、力学性能与收缩性能的影响。结果表明,丁苯乳液改性砂浆的流动度随着2种膨胀剂掺量的增加均先增大后降低。在RH90%与RH60%下,CSA掺量分别为水泥质量的6%与10%时,砂浆的抗折与抗压强度最高。2种相对湿度下,CSA都可有效降低砂浆干燥收缩;RH90%下掺8%MEA可提升砂浆抗折与抗压强度,亦可有效补偿砂浆后期干燥收缩;RH60%下掺8%MEA会降低砂浆抗折与抗压强度,且无法有效补偿砂浆的干燥收缩。  相似文献   

8.
研究了粉煤灰掺量变化对脱硫石膏基砂浆的稠度、体积密度、抗压强度、抗折强度、粘结拉伸强度、干燥收缩性能等物理力学性能的影响规律。结果表明,粉煤灰对脱硫石膏基砂浆物理力学性能具有显著影响,能使得脱硫石膏基砂浆稠度明显增大,新拌砂浆体积密度和硬化砂浆体积密度略微增大,抗压强度、抗折强度和粘结拉伸强度均显著提高;粉煤灰也能显著改善脱硫石膏基砂浆的干燥收缩性,降低干燥收缩率;且当粉煤灰掺量为20%~30%时,其对脱硫石膏基砂浆的上述物理力学性能改善效果最佳。  相似文献   

9.
为了研究聚乙烯醇(PVA)纤维的掺量对水泥胶砂力学性能的影响,采用硫铝酸盐水泥、粉煤灰、硅灰、聚乙烯醇纤维等材料制备40 mm×40 mm×160 mm胶砂试件,通过流动度试验、抗折试验、抗压试验测试7组试件的力学性能。试验结果表明,随着纤维掺量的增加,胶砂的流动度逐渐降低。抗折、抗压试验中,试件的抗折强度均比不加纤维的有不同程度提高,掺加质量分数0.20%的PVA纤维的试件3、7、28 d的抗折强度均最大;试件的抗压强度和抗折强度的变化规律相同。韧性数值表明,试件在龄期为3 d的测试结果呈上升趋势,龄期为7 d和28 d呈下降趋势。经综合比较,PVA纤维质量分数为0.20%时,试件的力学性能最佳。  相似文献   

10.
研究了矿渣微粉掺量变化对脱硫石膏基砂浆的稠度、体积密度、抗压强度、抗折强度、软化系数、粘结拉伸强度、干燥收缩性能等物理力学性能的影响规律。结果表明,矿渣微粉对脱硫石膏基砂浆物理力学性能具有显著影响,能显著提高脱硫石膏基砂浆稠度、新拌砂浆体积密度和硬化砂浆体积密度,降低脱硫石膏基砂浆的抗压强度、抗折强度和软化系数,尤其是早期强度;但能明显提高粘结拉伸强度,显著降低干燥收缩率,改善干燥收缩性能;矿渣微粉掺量不超过20%时,其对脱硫石膏基砂浆上述物理力学性能的改善效果较佳。  相似文献   

11.
阳令明  张维祥  周绍青 《硅酸盐通报》2020,39(12):3924-3931
糯米灰浆的早期强度以及收缩、冻融等性能制约了其在古建筑修复中的应用。利用扫描电镜(SEM)、X射线衍射(XRD)等技术手段探讨了玄武岩纤维掺量及糯米浆浓度的改变对糯米灰浆力学性能的影响及其机理。结果表明:糯米浆的浓度调控了碳酸钙晶体的位置、大小、形貌,对糯米灰浆的早期强度及收缩、耐温、冻融等性能影响较大,糯米浆浓度为6.5%(质量分数)时各项力学性能最佳;玄武岩纤维的空腔结构及细小直径的特点对糯米灰浆的力学性能有较大帮助,28 d抗压、抗折强度分别提高436%、150%,7 d收缩率下降65%,冻融次数明显增加,5%(质量分数)掺量的玄武岩纤维-糯米灰浆综合性能最佳。在实际应用中,掺入一定量的玄武岩纤维来改善糯米灰浆性能是可行的。  相似文献   

12.
聚丙烯酸酯乳液在水泥砂浆中的应用   总被引:2,自引:0,他引:2  
为了提高水泥砂浆的韧性,选用了能形成柔性薄膜结构的聚合物--聚丙烯酸酯乳液对水泥砂浆进行改性.研究了聚丙烯酸酯乳液对水泥砂浆体积密度、抗压强度、抗折强度、韧性、动弹模量和黏结抗拉强度的影响.结果表明:聚丙烯酸酯乳液在一定程度上降低了水泥砂浆体积密度和抗压强度,对抗折强度影响较小,改善了水泥砂浆的韧性,并且可提高黏结抗拉强度.当乳液掺量(质量分数)大于5%时,28 d混合养护聚丙烯酸酯乳液水泥砂浆的压折比降低到3以下,只有当乳液掺量大于10%时,水泥砂浆的黏结抗拉强度才明显提高.  相似文献   

13.
采用磷建筑石膏(PBG)、柠檬酸钠(SC)、甲基纤维素(MC)及玻化微珠为原料制备轻质抹灰石膏,并系统地分析了外加剂、轻集料对砂浆性能的影响机制。结果表明,柠檬酸钠可增大砂浆的流动性能, 当掺量为0.8%(掺量均为质量分数)时,样品抗压强度达到16.3 MPa。然而,甲基纤维素降低了砂浆的流动性能,当掺量为0.40%时,样品抗压强度仅为11.3 MPa。玻化微珠会降低砂浆密度及流动性,缩短凝结时间,增大了保水率及硬化体拉伸粘结强度。采用95%磷建筑石膏、5.0%玻化微珠并按磷建筑石膏质量外掺1.0%SC、0.20%MC配制的砂浆样品性能可达到GB/T 28627—2012《抹灰石膏》中的轻质抹灰石膏性能的要求。随着SC掺量的增加,轻质抹灰石膏水化产物二水石膏的形貌向长条、针状转变,晶体结晶度降低、搭接程度增大,从而使得抗折强度增大,抗压及拉伸粘结强度减小;随着MC掺量的增加,轻质抹灰石膏水化产物二水石膏的形貌变成厚板状,晶体间搭接程度及结晶度增大,使得硬化强度增大。  相似文献   

14.
本文研究了不同拌和水以及海水拌和时粉煤灰和硅灰掺量对硫铝酸盐水泥(SAC)砂浆力学性能和表观孔隙率以及净浆凝结时间、化学收缩、孔溶液pH值和氯离子结合能力等的影响,并通过XRD、SEM和EDS分析水泥水化产物和微观结构。结果表明,海水能加快SAC早期水化并提高其早期强度,但后期强度和淡水拌和时无明显差别。粉煤灰和硅灰均会延长SAC凝结时间,对早期抗压强度不利,而掺加质量分数为5.0%和7.5%的硅灰能提高SAC砂浆28 d抗压强度。硅灰掺量增加时会提高用水量和表观孔隙率,降低流动性,使水泥化学收缩增大,降低净浆pH值且减少氯离子结合量;粉煤灰能够提高砂浆流动性,减少水泥化学收缩,但掺量越大对SAC砂浆抗压强度和抗折强度越不利,掺质量分数为10%的粉煤灰可小幅提高氯离子结合量且减小表观孔隙率。  相似文献   

15.
为了促进建筑垃圾的再生利用,通过再生微粉替代部分水泥制备干混砂浆,探究再生微粉细度、掺量和复掺比对砂浆稠度、抗压强度、抗折强度和显微结构的影响规律。结果表明,随着再生微粉颗粒细度的减小,砂浆稠度整体呈下降趋势,28 d抗压、抗折强度均呈增加趋势,研磨40 h时,其强度达到最大值。随着再生微粉掺量的增加,砂浆稠度呈下降趋势,28 d抗压、抗折强度呈先增加后降低的趋势,当掺量为10%(质量分数)时,抗压强度达到最大值。随着再生微粉复掺比(质量比)的增大,砂浆稠度呈下降趋势,砂浆的28 d抗压、抗折强度呈先增加后降低的趋势,当研磨20 h的微粉与未研磨微粉复掺比为6∶4时,其抗压强度达到最大值。  相似文献   

16.
研究了废弃砂浆粉对水泥物理力学性能的影响,测试了标准稠度需水量、凝结时间、流动度和强度.结果表明:废弃砂浆粉的掺加导致水泥的标准稠度需水量增加,水泥的凝结时间总体降低,水泥净浆的流动度及流动度损失均呈降低趋势,而减水剂与水灰比对水泥净浆的流动度及流动度损失有较大影响.废弃砂浆粉掺加量的多少将直接影响到水泥砂浆的强度,掺量越大,水泥砂浆强度损失越严重,而掺量低于10%时,水泥砂浆仍具有较高的抗压强度和抗折强度.微观结构特征表明,废弃砂浆粉掺量在一定范围时,水泥砂浆体系中产生钙矾石与C-S-H凝胶较多,体系结构密实性好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号