首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction of wind speed can provide a reference for the reliable utilization of wind energy. This study focuses on 1-hour, 1-step ahead deterministic wind speed prediction with only wind speed as input. To consider the time-varying characteristics of wind speed series, a dynamic ensemble wind speed prediction model based on deep reinforcement learning is proposed. It includes ensemble learning, multi-objective optimization, and deep reinforcement learning to ensure effectiveness. In part A, deep echo state network enhanced by real-time wavelet packet decomposition is used to construct base models with different vanishing moments. The variety of vanishing moments naturally guarantees the diversity of base models. In part B, multi-objective optimization is adopted to determine the combination weights of base models. The bias and variance of ensemble model are synchronously minimized to improve generalization ability. In part C, the non-dominated solutions of combination weights are embedded into a deep reinforcement learning environment to achieve dynamic selection. By reasonably designing the reinforcement learning environment, it can dynamically select non-dominated solution in each prediction according to the time-varying characteristics of wind speed. Four actual wind speed series are used to validate the proposed dynamic ensemble model. The results show that: (a) The proposed dynamic ensemble model is competitive for wind speed prediction. It significantly outperforms five classic intelligent prediction models and six ensemble methods; (b) Every part of the proposed model is indispensable to improve the prediction accuracy.  相似文献   

2.
摘要:针对鸡群算法(CSO)易陷入局部最优和出现早熟收敛的缺陷,提出了一种混合改进的鸡群优化算法(OBSA-CSO)。算法通过采用反向学习对种群进行初始化,同时对越界个体进行边界变异操作保证了算法的种群多样性并利于算法的全局搜索;在寻优过程中对母鸡采用新的位置更新公式,并对最优个体采用改进退温函数的模拟退火扰动,通过Metropolis准则进行择优的方式有效的提高了算法的寻优精度和收敛速度。通过对7个测试函数在固定迭代次数和固定寻优精度条件下的实验表明,改进后的算法相较于传统鸡群算法具有较好的寻优精度和收敛速度。  相似文献   

3.
为了更好地预测风电场的风电功率,提取风电场相邻站点之间时空信息和潜在联系,提出了一种基于卷积神经网络(CNN)、互信息(mutual information, MI)法、长短时记忆网络(LSTM)、注意力机制(AT)和粒子群优化(PSO)的短期风电场预测模型(MI-CNN-ALSTM-PSO)。CNN用于提取不同站点的空间特征,LSTM则用于获取多个站点的风电数据的时间依赖信息,据此设计CNN-LSTM时空预测模型,并结合深度学习算法,如MI特征选择、 AT注意力机制、 PSO参数优化,对模型进一步改进。通过两个海岛风电场的实验数据分析可知,所提模型具有最优的统计误差,CNN-LSTM模型可以高效提取风电场时空信息并进行时间序列预测,而结合深度学习算法(MI、 AT和PSO)后的组合模型能进一步提高风电功率预测精度和稳定性。  相似文献   

4.
针对萤火虫群优化算法(GSO)不稳定、收敛速度较慢与收敛精度较低等问题和广义回归神经网络(GRNN)的网络结构导致预测误差的特性,提出基于混合改进萤火虫群算法与广义回归神经网络并行集成学习模型,应用于雾霾预测.首先构建融合多种搜索策略的混合改进萤火虫群优化算法(HIGSO),并使用标准测试函数验证算法性能.然后结合HIGSO与引入扰动因子的GRNN模型,建立并行集成学习模型,并通过UCI标准数据集验证模型的有效性与可行性.最后将模型应用于北京、上海和广州地区的雾霾预测,进一步验证模型在雾霾预测中的性能.  相似文献   

5.
针对鸡群算法易陷入局部最优和出现早熟收敛的情况,提出一种混合改进搜索策略的鸡群优化算法。该算法通过种内和种间竞争,确定子群规模及等级次序,子群角色通过竞争繁殖进行动态更新。种群进化寻优中引入全局最优引导策略和动态惯性策略,个体的寻食学习通过动态惯性策略进行自我调整,并同时接受子群与种群中的最优个体引导,以平衡局部搜索和全局搜索之间的关系。仿真实验结果表明,与基本鸡群算法和粒子群算法等相比,改进后的鸡群算法能有效提高算法的收敛精度和收敛速度。  相似文献   

6.
风速预测是影响风电场效率和稳定性的重要因素.文中基于风速的时空特征,融合变分模态分解(VMD)和混合深度学习框架进行短期风速预测,即VHSTN (VMD-based hybrid spatio-temporal network).其中,混合深度学习框架由卷积神经网络(CNN)、长短时记忆网络(LSTM)以及自注意力机制(SAM)组成.该算法对原始数据清洗后,采用VMD将多站点风速的时空数据分解为固有模态函数(intrinsic mode functions, IMF)分量,去除风速数据的不稳定性;然后针对各IMF分量,应用底部的CNN抽取空域特征;再用顶层LSTM提取时域特征,之后用SAM通过自适应加权加强对隐藏特征的提取并得到各分量的预测结果;最后合并获得最终预测风速.在数据集WIND上进行实验,并和相关典型算法对比,实验结果表明了该算法的有效性和优越性.  相似文献   

7.
混沌时间序列的混合粒子群优化预测   总被引:2,自引:0,他引:2  
提出一种混合粒子群优化算法,即在改进粒子群优化算法全局搜索模型参数的基础上,利用梯度下降法进一步确定径向基神经网络模型参数,以提高网络的收敛精度和网络性能.采用基于RBFNN的混合粒子群优化算法进行离散Henon和连续Mackey-Glass混沌时间序列预测仿真,结果表明该算法能快速精确地预测混沌时间序列,是研究复杂非线性动力系统辨识和控制的一种有效方法.  相似文献   

8.
Accurate and steady wind speed prediction is essential for the efficient management of wind power factories and energy systems. However, it is difficult to obtain satisfactory forecasting performance because of the characteristics of random nonlinear fluctuations inherent in wind speed variation. Considering the drawbacks of statistical models in forecasting nonlinear time series and the problem of artificial intelligence models easily falling into a local optimum, in this study, we successfully integrate the variable weighted combination theory into a new combined forecasting model that simultaneously consists of three disparate hybrid models based on the decomposition technology. Moreover, the extreme learning machine optimized by the multi-objective grasshopper optimization algorithm is adopted to integrate all the forecasting results derived from each hybrid model to further enhance the forecasting accuracy. In this study, we consider a case study that employs several authentic wind speed data aggregates of Shandong wind farms for an evaluation of the forecasting performance of the proposed combined model. The experimental results reveal that this proposed model surpasses the contrasted benchmark models and is satisfactory for intellective grid programs.  相似文献   

9.
Artificial neural networks have been widely used in time series prediction. In this paper, multi-layer feedforward neural networks with optimized structures, using particle swarm optimization (PSO) algorithm, are used for hourly load prediction based on load time series of IEEE Reliability Test System. To have a small and appropriate feature subset, a hybrid method is used for feature selection in this paper. This hybrid method uses the combination of genetic algorithm (GA) and ant colony optimization (ACO) algorithm. The season, day of the week, time of the day and history load are considered as load influencing factors in this study based on the mentioned standard load dataset. The optimized number of neurons in the hidden layers of multi-layer perceptron (MLP) is determined using PSO algorithm. Experimental results show that the proposed hybrid model offers superior performance, in terms of mean absolute percentage error (MAPE), in time series prediction as compared to some recent researches in this field.  相似文献   

10.
Single multiplicative neuron model is a novel neural network model introduced recently, which has been used for time series prediction and function approximation. The model is based on a polynomial architecture that is the product of linear functions in different dimensions of the space. Particle swarm optimization (PSO), a global optimization method, is proposed to train the single neuron model in this paper. An improved version of the original PSO, cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of the conventional PSO. The proposed CRPSO, PSO, back-propagation algorithm and genetic algorithm are employed to train the model for three well-known time series prediction problems. The experimental results demonstrate the superiority of CRPSO-based neuron model in efficiency and robustness over the other three algorithms.  相似文献   

11.
Crop yield has been predicted using environmental, land, water, and crop characteristics in a prospective research design. When it comes to predicting crop production, there are a number of factors to consider, including weather conditions, soil qualities, water levels and the location of the farm. A broad variety of algorithms based on deep learning are used to extract useful crops for forecasting. The combination of data mining and deep learning creates a whole crop yield prediction system that is able to connect raw data to predicted crop yields. The suggested study uses a Discrete Deep belief network with Visual Geometry Group (VGG) Net classification method over the tweak chick swarm optimization approach to estimate agricultural production. The Network’s successively stacked layers were fed the data parameters. Based on the input parameters, a crop production prediction environment is constructed using the network architecture. Using the tweak chick swarm optimization technique, the best characteristics of input data are preprocessed, and the optimal output is used as input for the classification process. Discrete Deep belief network with the Visual Geometry Group Net classifier is used to classify the data and forecast agricultural production. The suggested model correctly predicts crop output with 97 percent accuracy, exceeding existing models by maintaining the baseline data distribution.  相似文献   

12.
In this paper, two CI techniques, namely, single multiplicative neuron (SMN) model and adaptive neuro-fuzzy inference system (ANFIS), have been proposed for time series prediction. A variation of particle swarm optimization (PSO) with co-operative sub-swarms, called COPSO, has been used for estimation of SMN model parameters leading to COPSO-SMN. The prediction effectiveness of COPSO-SMN and ANFIS has been illustrated using commonly used nonlinear, non-stationary and chaotic benchmark datasets of Mackey–Glass, Box–Jenkins and biomedical signals of electroencephalogram (EEG). The training and test performances of both hybrid CI techniques have been compared for these datasets.  相似文献   

13.
贾承丰  韩华  吕亚楠  张路 《自动化学报》2020,46(8):1703-1713
链路预测中普遍存在两大问题:特征提取困难和类别数据不平衡.本文借鉴文本处理中的深度学习特征提取算法和优化问题中的粒子群算法, 提出一种基于词向量的粒子群优化算法(Word2vec-PSO).该方法首先通过随机游走产生网络序列后, 利用Word2vec算法对节点序列特征提取.然后在有监督的条件下, 利用粒子群算法对提取好的特征进行筛选, 并确定重采样的参数来解决类别数据不平衡问题, 并分析了不同链路预测算法的计算复杂性.最后将本文的算法与基于相似性、基于深度学习、基于不平衡数据的3类链路预测算法, 在4个不同的时序网络中进行实证对比研究.结果表明, 本文提出的链路预测算法预测精度较高, 算法更加稳定且具有普适性.  相似文献   

14.
针对目前无刷同步发电机旋转整流器故障识别方法识别速度慢的问题,提出一种基于改进极限学习机的故障快速识别技术。该方法通过鸡群算法优化极限学习机的参数,得到优化的识别模型,并将其应用于无刷同步发电机旋转整流器的故障识别中。实验结果表明,经过优化的极限学习机与现有分类方法相比,具有很好的诊断性能和较高的分类速度。该方法适用于无刷同步发电机旋转整流器故障快速识别和定位。  相似文献   

15.
A cyber physical energy system (CPES) involves a combination of processing, network, and physical processes. The smart grid plays a vital role in the CPES model where information technology (IT) can be related to the physical system. At the same time, the machine learning (ML) models find useful for the smart grids integrated into the CPES for effective decision making. Also, the smart grids using ML and deep learning (DL) models are anticipated to lessen the requirement of placing many power plants for electricity utilization. In this aspect, this study designs optimal multi-head attention based bidirectional long short term memory (OMHA-MBLSTM) technique for smart grid stability prediction in CPES. The proposed OMHA-MBLSTM technique involves three subprocesses such as pre-processing, prediction, and hyperparameter optimization. The OMHA-MBLSTM technique employs min-max normalization as a pre-processing step. Besides, the MBLSTM model is applied for the prediction of stability level of the smart grids in CPES. At the same time, the moth swarm algorithm (MHA) is utilized for optimally modifying the hyperparameters involved in the MBLSTM model. To ensure the enhanced outcomes of the OMHA-MBLSTM technique, a series of simulations were carried out and the results are inspected under several aspects. The experimental results pointed out the better outcomes of the OMHA-MBLSTM technique over the recent models.  相似文献   

16.
Time series forecasting is an important and widely interesting topic in the research of system modeling. We propose a new computational intelligence approach to the problem of time series forecasting, using a neuro-fuzzy system (NFS) with auto-regressive integrated moving average (ARIMA) models and a novel hybrid learning method. The proposed intelligent system is denoted as the NFS–ARIMA model, which is used as an adaptive nonlinear predictor to the forecasting problem. For the NFS–ARIMA, the focus is on the design of fuzzy If-Then rules, where ARIMA models are embedded in the consequent parts of If-Then rules. For the hybrid learning method, the well-known particle swarm optimization (PSO) algorithm and the recursive least-squares estimator (RLSE) are combined together in a hybrid way so that they can update the free parameters of NFS–ARIMA efficiently. The PSO is used to update the If-part parameters of the proposed predictor, and the RLSE is used to adapt the Then-part parameters. With the hybrid PSO–RLSE learning method, the NFS–ARIMA predictor may converge in fast learning pace with admirable performance. Three examples are used to test the proposed approach for forecasting ability. The results by the proposed approach are compared to other approaches. The performance comparison shows that the proposed approach performs appreciably better than the compared approaches. Through the experimental results, the proposed approach has shown excellent prediction performance.  相似文献   

17.
Severe speckle noise existed in synthetic aperture radar (SAR) image presents a challenge to image segmentation. Though some traditional segmentation methods for SAR image have some success, most of them fail to consider segmentation effects and segmentation speed at the same time. In this paper, we propose a novel method of SAR image fast segmentation which is based on an improved chicken swarm optimization algorithm. In this method, the positions of the whole chicken swarm are firstly initialized in a narrowed foraging space. Secondly, the grey entropy model is selected as the fitness function of the improved chicken swarm optimization algorithm. Hence, the optimal threshold value is located gradually and quickly by virtue of the foraging behaviors of chicken swarm with a hierarchal order. Experimental results show that our method is superior to some segmentation methods based on genetic algorithm, artificial fish swarm algorithm in convergence, stability and segmentation effects.  相似文献   

18.
为了有效预测交通事故,提出一种基于改进粒子群算法优化支持向量回归机的预测模型。改进粒子群算法利用网格搜索对全局最优粒子的邻域进行精细搜索,结合粒子群算法较快的收敛速度和网格搜索较强局部搜索能力的优点,提高了支持向量回归机相关参数的优化精度,进而改善了交通事故预测模型的预测性能。仿真结果表明,基于改进粒子群算法优化支持向量回归机的交通事故预测模型达到了较快的学习速度和较高的预测精度,具有良好的工程应用性。   相似文献   

19.
在农业生产中,准确的风速预报对农作物安全防范有着至关重要的作用。针对云南地区的高海拔和多山,基于卷积神经网络框架,提出了卷积长短时序分析神经网络-卷积门控循环单元神经网络(ConvLSTM-ConvGRU)混合风速预测模型。通过神经网络框架的改进,有效的提高了模型对风场空间特征的提取。利用美国国家环境预报中心(NCEP)提供的再分析风速数据集,使用ConvLSTM、ConvGRU、ConvLSTM-ConvGRU混合模型分别对云南地区的风速进行。实验结果表明:ConvLSTM-ConvGRU混合风速预测模型能够有效对云南地区风场进行预测,相较于另外两个模型提高了预测准确度。  相似文献   

20.
In this paper, an integrated model based on efficient extreme learning machine (EELM) and differential evolution (DE) is proposed to predict chaotic time series. In the proposed model, a novel learning algorithm called EELM is presented and used to model the chaotic time series. The EELM inherits the basic idea of extreme learning machine (ELM) in training single hidden layer feedforward networks, but replaces the commonly used singular value decomposition with a reduced complete orthogonal decomposition to calculate the output weights, which can achieve a much faster learning speed than ELM. Moreover, in order to obtain a more accurate and more stable prediction performance for chaotic time series prediction, this model abandons the traditional two-stage modeling approach and adopts an integrated parameter selection strategy which employs a modified DE algorithm to optimize the phase space reconstruction parameters of chaotic time series and the model parameter of EELM simultaneously based on a hybrid validation criterion. Experimental results show that the proposed integrated prediction model can not only provide stable prediction performances with high efficiency but also achieve much more accurate prediction results than its counterparts for chaotic time series prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号