首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent developments in digital cameras and electronic gadgets coupled with Machine Learning (ML) and Deep Learning (DL)-based automated apple leaf disease detection models are commonly employed as reasonable alternatives to traditional visual inspection models. In this background, the current paper devises an Effective Sailfish Optimizer with EfficientNet-based Apple Leaf disease detection (ESFO-EALD) model. The goal of the proposed ESFO-EALD technique is to identify the occurrence of plant leaf diseases automatically. In this scenario, Median Filtering (MF) approach is utilized to boost the quality of apple plant leaf images. Moreover, SFO with Kapur's entropy-based segmentation technique is also utilized for the identification of the affected plant region from test image. Furthermore, Adam optimizer with EfficientNet-based feature extraction and Spiking Neural Network (SNN)-based classification are employed to detect and classify the apple plant leaf images. A wide range of simulations was conducted to ensure the effective outcomes of ESFO-EALD technique on benchmark dataset. The results reported the supremacy of the proposed ESFO-EALD approach than the existing approaches.  相似文献   

2.
Earlier recognition of breast cancer is crucial to decrease the severity and optimize the survival rate. One of the commonly utilized imaging modalities for breast cancer is histopathological images. Since manual inspection of histopathological images is a challenging task, automated tools using deep learning (DL) and artificial intelligence (AI) approaches need to be designed. The latest advances of DL models help in accomplishing maximum image classification performance in several application areas. In this view, this study develops a Deep Transfer Learning with Rider Optimization Algorithm for Histopathological Classification of Breast Cancer (DTLRO-HCBC) technique. The proposed DTLRO-HCBC technique aims to categorize the existence of breast cancer using histopathological images. To accomplish this, the DTLRO-HCBC technique undergoes pre-processing and data augmentation to increase quantitative analysis. Then, optimal SqueezeNet model is employed for feature extractor and the hyperparameter tuning process is carried out using the Adadelta optimizer. Finally, rider optimization with deep feed forward neural network (RO-DFFNN) technique was utilized employed for breast cancer classification. The RO algorithm is applied for optimally adjusting the weight and bias values of the DFFNN technique. For demonstrating the greater performance of the DTLRO-HCBC approach, a sequence of simulations were carried out and the outcomes reported its promising performance over the current state of art approaches.  相似文献   

3.
Lung cancer is the main cause of cancer related death owing to its destructive nature and postponed detection at advanced stages. Early recognition of lung cancer is essential to increase the survival rate of persons and it remains a crucial problem in the healthcare sector. Computer aided diagnosis (CAD) models can be designed to effectually identify and classify the existence of lung cancer using medical images. The recently developed deep learning (DL) models find a way for accurate lung nodule classification process. Therefore, this article presents a deer hunting optimization with deep convolutional neural network for lung cancer detection and classification (DHODCNN-LCC) model. The proposed DHODCNN-LCC technique initially undergoes pre-processing in two stages namely contrast enhancement and noise removal. Besides, the features extraction process on the pre-processed images takes place using the Nadam optimizer with RefineDet model. In addition, denoising stacked autoencoder (DSAE) model is employed for lung nodule classification. Finally, the deer hunting optimization algorithm (DHOA) is utilized for optimal hyper parameter tuning of the DSAE model and thereby results in improved classification performance. The experimental validation of the DHODCNN-LCC technique was implemented against benchmark dataset and the outcomes are assessed under various aspects. The experimental outcomes reported the superior outcomes of the DHODCNN-LCC technique over the recent approaches with respect to distinct measures.  相似文献   

4.
With technological advancements in 6G and Internet of Things (IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellular networks has become a hot research topic. At present, the proficient evolution of 6G networks allows the UAVs to offer cost-effective and timely solutions for real-time applications such as medicine, tracking, surveillance, etc. Energy efficiency, data collection, and route planning are crucial processes to improve the network communication. These processes are highly difficult owing to high mobility, presence of non-stationary links, dynamic topology, and energy-restricted UAVs. With this motivation, the current research paper presents a novel Energy Aware Data Collection with Routing Planning for 6G-enabled UAV communication (EADCRP-6G) technique. The goal of the proposed EADCRP-6G technique is to conduct energy-efficient cluster-based data collection and optimal route planning for 6G-enabled UAV networks. EADCRP-6G technique deploys Improved Red Deer Algorithm-based Clustering (IRDAC) technique to elect an optimal set of Cluster Heads (CH) and organize these clusters. Besides, Artificial Fish Swarm-based Route Planning (AFSRP) technique is applied to choose an optimum set of routes for UAV communication in 6G networks. In order to validated whether the proposed EADCRP-6G technique enhances the performance, a series of simulations was performed and the outcomes were investigated under different dimensions. The experimental results showcase that the proposed model outperformed all other existing models under different evaluation parameters.  相似文献   

5.
Melanoma remains a serious illness which is a common form of skin cancer. Since the earlier detection of melanoma reduces the mortality rate, it is essential to design reliable and automated disease diagnosis model using dermoscopic images. The recent advances in deep learning (DL) models find useful to examine the medical image and make proper decisions. In this study, an automated deep learning based melanoma detection and classification (ADL-MDC) model is presented. The goal of the ADL-MDC technique is to examine the dermoscopic images to determine the existence of melanoma. The ADL-MDC technique performs contrast enhancement and data augmentation at the initial stage. Besides, the k-means clustering technique is applied for the image segmentation process. In addition, Adagrad optimizer based Capsule Network (CapsNet) model is derived for effective feature extraction process. Lastly, crow search optimization (CSO) algorithm with sparse autoencoder (SAE) model is utilized for the melanoma classification process. The exploitation of the Adagrad and CSO algorithm helps to properly accomplish improved performance. A wide range of simulation analyses is carried out on benchmark datasets and the results are inspected under several aspects. The simulation results reported the enhanced performance of the ADL-MDC technique over the recent approaches.  相似文献   

6.
The advancement in medical imaging systems such as computed tomography (CT), magnetic resonance imaging (MRI), positron emitted tomography (PET), and computed radiography (CR) produces huge amount of volumetric images about various anatomical structure of human body. There exists a need for lossless compression of these images for storage and communication purposes. The major issue in medical image is the sequence of operations to be performed for compression and decompression should not degrade the original quality of the image, it should be compressed loss lessly. In this article, we proposed a lossless method of volumetric medical image compression and decompression using adaptive block‐based encoding technique. The algorithm is tested for different sets of CT color images using Matlab. The Digital Imaging and Communications in Medicine (DICOM) images are compressed using the proposed algorithm and stored as DICOM formatted images. The inverse process of adaptive block‐based algorithm is used to reconstruct the original image information loss lessly from the compressed DICOM files. We present the simulation results for large set of human color CT images to produce a comparative analysis of the proposed methodology with block‐based compression, and JPEG2000 lossless image compression technique. This article finally proves the proposed methodology gives better compression ratio than block‐based coding and computationally better than JPEG 2000 coding. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 227–234, 2013  相似文献   

7.
In Aerial surveillance, thermal images acquired by unmanned aerial vehicle (UAV) are greatly affected due to various external interferences, which results in a low contrast image. Widely used conventional contrast enhancement methods such as histogram equalization and dynamic range partitioning techniques suffer from severe brightness changes and reduced sharpness, which in turn fail to preserve the edge details of the image. Thus for efficient target detection, it is essential to develop effective thermal infrared image contrast and edge enhancement technique. In this paper, wavelet transform (WT) and singular value decomposition (SVD)-based image enhancement technique is attempted for the target detection using thermal images captured by UAV. The discrete wavelet transform (DWT), stationary wavelet transform (SWT) and SVD are used for texture feature enhancement, edge enhancement and illumination correction, respectively. The experimental results show that the proposed technique yields higher entropy (6.7485), EMEE (2.1212), MSSIM (0.8719) and lower AMBE (21.9049) values when compared to other existing techniques.  相似文献   

8.
In recent times, Industrial Internet of Things (IIoT) experiences a high risk of cyber attacks which needs to be resolved. Blockchain technology can be incorporated into IIoT system to help the entrepreneurs realize Industry 4.0 by overcoming such cyber attacks. Although blockchain-based IIoT network renders a significant support and meet the service requirements of next generation network, the performance arrived at, in existing studies still needs improvement. In this scenario, the current research paper develops a new Privacy-Preserving Blockchain with Deep Learning model for Industrial IoT (PPBDL-IIoT) on 6G environment. The proposed PPBDL-IIoT technique aims at identifying the existence of intrusions in network. Further, PPBDL-IIoT technique also involves the design of Chaos Game Optimization (CGO) with Bidirectional Gated Recurrent Neural Network (BiGRNN) technique for both detection and classification of intrusions in the network. Besides, CGO technique is applied to fine tune the hyperparameters in BiGRNN model. CGO algorithm is applied to optimally adjust the learning rate, epoch count, and weight decay so as to considerably improve the intrusion detection performance of BiGRNN model. Moreover, Blockchain enabled Integrity Check (BEIC) scheme is also introduced to avoid the misrouting attacks that tamper the OpenFlow rules of SDN-based IIoT system. The performance of the proposed PPBDL-IIoT methodology was validated using Industrial Control System Cyber-attack (ICSCA) dataset and the outcomes were analysed under various measures. The experimental results highlight the supremacy of the presented PPBDL-IIoT technique than the recent state-of-the-art techniques with the higher accuracy of 91.50%.  相似文献   

9.
In this article, the performance analysis of Expectation Maximization (EM), Singular Value Decomposition (SVD), and Support Vector Machines (SVM) classifiers for classification of carcinogenic regions from various medical images is carried out. Cancer detection is one of the critical issues where excessive care needs to be taken for better diagnosis. Any classifier needs to detect the cancer with respect to the efficiency in time of detection and performance. Due to these, three classifiers are selected: Expectation Maximization (EM), Singular Value Decomposition (SVD), and Support Vector Machines (SVM). EM classifier performs as the optimizer and SVD classifier performs as the dual class classifier. SVM classifier is used as both optimizer and classifier for multiclass classification procedure and for wide stage cancer detection procedures. The performance analysis of all the three classifiers are analyzed for a group of 100 cancer patients based on the benchmark parameter such as Performance Measures and Quality Metrics. From the experimental results it is evident, that the SVM classifier significantly outperforms other classifiers in the classification of carcinogenic regions of medical images.  相似文献   

10.
Many content-based image retrieval techniques like local binary pattern (LBP), local ternary pattern (LTP), local mesh peak valley edge pattern (LMePVEP), local mesh ternary pattern (LMeTerP), etc. extract texture features of an image for retrieval purposes. These techniques use fixed threshold to encode the input image and selection of such threshold value is not guided, that is, a chosen threshold may not be optimal for all images in the database. Moreover the performance of these texture-based static threshold algorithms also decreases if the input images are noisy. In this paper, a dynamic threshold value-based local mesh ternary pattern method is proposed in which the threshold value is chosen from the neighborhood of a central pixel using median of all pixels. The proposed modification reduces the overall effect of noise component and thereby improves the average retrieval rate (ARR) and average retrieval precision (ARP) of the original technique. The proposed modified technique has been compared with five other image retrieval approaches to prove its worthiness - the original local mesh ternary pattern technique (LMeTerP), a local ternary pattern technique (LTP), a Best ensemble technique, a multi-label classification CNN model and a CNN-based model of the proposed approach using a VIA ELCAP lung database and an Emphysema database. An improvement of 3.92% in ARR and 2.53% in ARP is observed over the basic local mesh ternary pattern method. Further the proposed modification has been combined with CNN concept and its results have also been analyzed.  相似文献   

11.
Osteosarcoma is one of the rare bone cancers that affect the individuals aged between 10 and 30 and it incurs high death rate. Early diagnosis of osteosarcoma is essential to improve the survivability rate and treatment protocols. Traditional physical examination procedure is not only a time-consuming process, but it also primarily relies upon the expert’s knowledge. In this background, the recently developed Deep Learning (DL) models can be applied to perform decision making. At the same time, hyperparameter optimization of DL models also plays an important role in influencing overall classification performance. The current study introduces a novel Symbiotic Organisms Search with Deep Learning-driven Osteosarcoma Detection and Classification (SOSDL-ODC) model. The presented SOSDL-ODC technique primarily focuses on recognition and classification of osteosarcoma using histopathological images. In order to achieve this, the presented SOSDL-ODC technique initially applies image pre-processing approach to enhance the quality of image. Also, MobileNetv2 model is applied to generate a suitable group of feature vectors whereas hyperparameter tuning of MobileNetv2 model is performed using SOS algorithm. At last, Gated Recurrent Unit (GRU) technique is applied as a classification model to determine proper class labels. In order to validate the enhanced osteosarcoma classification performance of the proposed SOSDL-ODC technique, a comprehensive comparative analysis was conducted. The obtained outcomes confirmed the betterment of SOSDL-ODC approach than the existing approaches as the former achieved a maximum accuracy of 97.73%.  相似文献   

12.
Image segmentation is vital when analyzing medical images, especially magnetic resonance (MR) images of the brain. Recently, several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation; however, the algorithms become trapped in local minima and have low convergence speeds, particularly as the number of threshold levels increases. Consequently, in this paper, we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm (JSA) (an optimizer). We modify the JSA to prevent descents into local minima, and we accelerate convergence toward optimal solutions. The improvement is achieved by applying two novel strategies: Ranking-based updating and an adaptive method. Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions. We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution; we allow a small amount of exploration to avoid descents into local minima. The two strategies are integrated with the JSA to produce an improved JSA (IJSA) that optimally thresholds brain MR images. To compare the performances of the IJSA and JSA, seven brain MR images were segmented at threshold levels of 3, 4, 5, 6, 7, 8, 10, 15, 20, 25, and 30. IJSA was compared with several other recent image segmentation algorithms, including the improved and standard marine predator algorithms, the modified salp and standard salp swarm algorithms, the equilibrium optimizer, and the standard JSA in terms of fitness, the Structured Similarity Index Metric (SSIM), the peak signal-to-noise ratio (PSNR), the standard deviation (SD), and the Features Similarity Index Metric (FSIM). The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM, the PSNR, the objective values, and the SD; in terms of the SSIM, IJSA was competitive with the others.  相似文献   

13.
Generally, the risks associated with malicious threats are increasing for the Internet of Things (IoT) and its related applications due to dependency on the Internet and the minimal resource availability of IoT devices. Thus, anomaly-based intrusion detection models for IoT networks are vital. Distinct detection methodologies need to be developed for the Industrial Internet of Things (IIoT) network as threat detection is a significant expectation of stakeholders. Machine learning approaches are considered to be evolving techniques that learn with experience, and such approaches have resulted in superior performance in various applications, such as pattern recognition, outlier analysis, and speech recognition. Traditional techniques and tools are not adequate to secure IIoT networks due to the use of various protocols in industrial systems and restricted possibilities of upgradation. In this paper, the objective is to develop a two-phase anomaly detection model to enhance the reliability of an IIoT network. In the first phase, SVM and Naïve Bayes, are integrated using an ensemble blending technique. K-fold cross-validation is performed while training the data with different training and testing ratios to obtain optimized training and test sets. Ensemble blending uses a random forest technique to predict class labels. An Artificial Neural Network (ANN) classifier that uses the Adam optimizer to achieve better accuracy is also used for prediction. In the second phase, both the ANN and random forest results are fed to the model’s classification unit, and the highest accuracy value is considered the final result. The proposed model is tested on standard IoT attack datasets, such as WUSTL_IIOT-2018, N_BaIoT, and Bot_IoT. The highest accuracy obtained is 99%. A comparative analysis of the proposed model using state-of-the-art ensemble techniques is performed to demonstrate the superiority of the results. The results also demonstrate that the proposed model outperforms traditional techniques and thus improves the reliability of an IIoT network.  相似文献   

14.
Brain tumor classification and retrieval system plays an important role in medical field. In this paper, an efficient Glioma Brain Tumor detection and its retrieval system is proposed. The proposed methodology consists of two modules as classification and retrieval. The classification modules are designed using preprocessing, feature extraction and tumor detection techniques using Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classifier. The image enhancement can be achieved using Heuristic histogram equalization technique as preprocessing and further texture features as Local Ternary Pattern (LTP) features and Grey Level Co‐occurrence Matrix (GLCM) features are extracted from the enhanced image. These features are used to classify the brain image into normal and abnormal using CANFIS classifier. The tumor region in abnormal brain image is segmented using normalized graph cut segmentation algorithm. The retrieval module is used to retrieve the similar segmented tumor regions from the dataset for diagnosing the tumor region using Euclidean algorithm. The proposed Glioma Brain tumor classification methodology achieves 97.28% sensitivity, 98.16% specificity and 99.14% accuracy. The proposed retrieval system achieves 97.29% precision and 98.16% recall rate with respect to ground truth images.  相似文献   

15.
Biopsy is one of the most commonly used modality to identify breast cancer in women, where tissue is removed and studied by the pathologist under the microscope to look for abnormalities in tissue. This technique can be time-consuming, error-prone, and provides variable results depending on the expertise level of the pathologist. An automated and efficient approach not only aids in the diagnosis of breast cancer but also reduces human effort. In this paper, we develop an automated approach for the diagnosis of breast cancer tumors using histopathological images. In the proposed approach, we design a residual learning-based 152-layered convolutional neural network, named as ResHist for breast cancer histopathological image classification. ResHist model learns rich and discriminative features from the histopathological images and classifies histopathological images into benign and malignant classes. In addition, to enhance the performance of the developed model, we design a data augmentation technique, which is based on stain normalization, image patches generation, and affine transformation. The performance of the proposed approach is evaluated on publicly available BreaKHis dataset. The proposed ResHist model achieves an accuracy of 84.34% and an F1-score of 90.49% for the classification of histopathological images. Also, this approach achieves an accuracy of 92.52% and F1-score of 93.45% when data augmentation is employed. The proposed approach outperforms the existing methodologies in the classification of benign and malignant histopathological images. Furthermore, our experimental results demonstrate the superiority of our approach over the pre-trained networks, namely AlexNet, VGG16, VGG19, GoogleNet, Inception-v3, ResNet50, and ResNet152 for the classification of histopathological images.  相似文献   

16.
Medical image segmentation is a preliminary stage of inclusion in identification tools. The correct segmentation of brain Magnetic Resonance Imaging (MRI) images is crucial for an accurate detection of the disease diagnosis. Due to in‐homogeneity, low distinction and noise the segmentation of the brain MRI images is treated as the most challenging task. In this article, we proposed hybrid segmentation, by combining the clustering methods with Hidden Markov Random Field (HMRF) technique. This aims to decrease the computational load and improves the runtime of segmentation method, as MRF methodology is used in post‐processing the images. Its evaluation has performed on real imaging data, resulting in the classification of brain tissues with dice similarity metric. These results indicate the improvement in performance of the proposed method with various noise levels, compared with existing algorithms. In implementation, selection of clustering method provides better results in the segmentation of MRI brain images.  相似文献   

17.
Aerial imagery is important in remote sensing applications. Unmanned aerial vehicle (UAV) has a wide range of applications in remote sensing and presents a substantial cost-effective solution when monitoring objects on the earth’s surface. Moreover, object detection and classification are important aspects of global information system, especially for remote sensing applications and power line monitoring, which are essential for the proper distribution of electricity to consumers. Manual inspection consumes much time and involves risk, especially in remote areas that host dangerous wildlife; hence, UAV-based approaches are more feasible for such monitoring. The authors propose an UAV approach that utilises a digital surface model and incorporates a stereo matching algorithm based on UAV stereo images. The proposed algorithm was based on a graph-cut (GC) algorithm that measured the disparity map. Results were compared with well-known algorithms; including, for example, global and local stereo matching algorithms. The proposed solution introduces and integrates ordering constraints along with a submodular energy minimisation function to/with the GC algorithm to enhance performance. The authors measured sensitivity and recall for all parameters against ground truth data for differently cropped images of 16 power poles. Results showed that the proposed model performed more accurately compared to extant methods.  相似文献   

18.
Abstract

The collaborative representation-based classification method performs well in the field of classification of high-dimensional images such as face recognition. It utilizes training samples from all classes to represent a test sample and assigns a class label to the test sample using the representation residuals. However, this method still suffers from the problem that limited number of training sample influences the classification accuracy when applied to image classification. In this paper, we propose a modified collaborative representation-based classification method (MCRC), which exploits novel virtual images and can obtain high classification accuracy. The procedure to produce virtual images is very simple but the use of them can bring surprising performance improvement. The virtual images can sufficiently denote the features of original face images in some case. Extensive experimental results doubtlessly demonstrate that the proposed method can effectively improve the classification accuracy. This is mainly attributed to the integration of the collaborative representation and the proposed feature-information dominated virtual images.  相似文献   

19.
The application of remote sensory images in crop monitoring has been increasing in the recent years due to its high classification accuracy. In this paper, a novel parallel classification methodology is proposed using a new clustering and classification concept. A novel neural network model with the Bs-Lion training algorithm is developed by integrating the Bayesian regularization training with the Lion Algorithm. Here, two levels of parallel processing are performed, namely parallel WLI-Fuzzy clustering and parallel BS-Lion neural network classification. The experimentation of the proposed parallel methodology is carried out using satellite images obtained from the Indian remote sensing satellite IRS-P6. The performance of the proposed system is compared with the existing techniques using validation measures accuracy, sensitivity and specificity. The experimentations resulted in promising results with an accuracy of 0.8994, sensitivity of 0.8682 and specificity of 0.8739, which favour the performance of the proposed parallel architecture in the classification.  相似文献   

20.
In recent years, Digital Twin (DT) has gained significant interest from academia and industry due to the advanced in information technology, communication systems, Artificial Intelligence (AI), Cloud Computing (CC), and Industrial Internet of Things (IIoT). The main concept of the DT is to provide a comprehensive tangible, and operational explanation of any element, asset, or system. However, it is an extremely dynamic taxonomy developing in complexity during the life cycle that produces a massive amount of engendered data and information. Likewise, with the development of AI, digital twins can be redefined and could be a crucial approach to aid the Internet of Things (IoT)-based DT applications for transferring the data and value onto the Internet with better decision-making. Therefore, this paper introduces an efficient DT-based fault diagnosis model based on machine learning (ML) tools. In this framework, the DT model of the machine is constructed by creating the simulation model. In the proposed framework, the Genetic algorithm (GA) is used for the optimization task to improve the classification accuracy. Furthermore, we evaluate the proposed fault diagnosis framework using performance metrics such as precision, accuracy, F-measure, and recall. The proposed framework is comprehensively examined using the triplex pump fault diagnosis. The experimental results demonstrated that the hybrid GA-ML method gives outstanding results compared to ML methods like Logistic Regression (LR), Naïve Bayes (NB), and Support Vector Machine (SVM). The suggested framework achieves the highest accuracy of 95% for the employed hybrid GA-SVM. The proposed framework will effectively help industrial operators make an appropriate decision concerning the fault analysis for IIoT applications in the context of Industry 4.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号