首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Vertical comb array microactuators   总被引:5,自引:0,他引:5  
A vertical actuator fabricated using a trench-refilled-with-polysilicon (TRiPs) process technology and employing an array of vertical oriented comb electrodes is presented. This actuator structure provides a linear drive to deflection characteristic and a large throw capability which are key features in many sensors, actuators and micromechanisms. The actuation principle and relevant theory is developed, including FastCap simulations for theoretical verification. Design simplifications have been suggested that enable one to use parallel plate analytical expressions which match simulation results with /spl sim/5.6% error. Several actuators were designed and fabricated using the 7-mask TRiPs technology with calculated drive voltages as low as 45 V producing 10 /spl mu/m of deflection. The actuators employed a mechanical structure that was 18 /spl mu/m tall using a polysilicon layer 1.5 /spl mu/m thick and occupying a total area of 750 /spl mu/m by 750 /spl mu/m. The actuators were successfully tested electrostatically and several microns of deflection were observed.  相似文献   

2.
In this paper, we analyze the effect of misalignment in electrostatic combdrives, and describe a fabrication technology that minimizes misalignment in vertical electrostatic combdrives by creating self-aligned, vertically staggered electrodes. Self-alignment of the interdigitated electrodes simplifies fabrication and minimizes failures due to electrostatic instability, thus enabling fabrication of narrow-gap, high-force actuators with high yield. The process is based on deep-reactive ion etching (DRIE) of buried-patterned silicon-on-insulator (SOI) wafers. Measurements on fabricated combdrives show relative misalignment of less than 0.05 /spl mu/m. This corresponds to less than 0.1% misalignment, which, according to our analysis, results in a travel range of 98% of that for perfectly aligned drives. The validity of the process is demonstrated by fabrication of scanning micromirrors measuring 300 /spl mu/m by 100 /spl mu/m. Optical angular deflections from 4/spl deg/ at low frequency to 40/spl deg/ at resonance were measured for an applied voltage of 75 Vpp. Resonant frequencies ranged from 5 kHz to 15 kHz for these devices, making them suitable for high-speed, high-resolution optical scanning and switching.  相似文献   

3.
This research utilizes the levitation effect of electrostatic comb fingers to design vertical-to-the-substrate actuation for optical phase shifting interferometry applications. For typical polysilicon comb drives with 2 /spl mu/m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 /spl mu/m above the stationary comb fingers. This distance is ideal for most phase shifting interferometric applications. A parallel plate capacitor between the suspended mass and the substrate provides in situ position sensing to control the vertical movement, providing a total feedback-controlled system. The travel range of the designed vertical microactuator is 1.2 /spl mu/m. Since the levitation force is not linear to the input voltage, a lock-in amplifier capacitive sensing circuit combined with a digital signal processor enables a linearized travel trajectory with 1.5 nm position control accuracy. A completely packaged micro phase shifter is described in this paper. One application for this microactuator is to provide linear phase shifting in the phase shifting diffraction interferometer (PSDI) developed at LLNL which can perform optical metrology down to 2 /spl Aring/ accuracy.  相似文献   

4.
In this paper, we present CMOS compatible fabrication of monocrystalline silicon micromirror arrays using membrane transfer bonding. To fabricate the micromirrors, a thin monocrystalline silicon device layer is transferred from a standard silicon-on-insulator (SOI) wafer to a target wafer (e.g., a CMOS wafer) using low-temperature adhesive wafer bonding. In this way, very flat, uniform and low-stress micromirror membranes made of monocrystalline silicon can be directly fabricated on top of CMOS circuits. The mirror fabrication does not contain any bond alignment between the wafers, thus, the mirror dimensions and alignment accuracies are only limited by the photolithographic steps. Micromirror arrays with 4/spl times/4 pixels and a pitch size of 16 /spl mu/m/spl times/16 /spl mu/m have been fabricated. The monocrystalline silicon micromirrors are 0.34 /spl mu/m thick and have feature sizes as small as 0.6 /spl mu/m. The distance between the addressing electrodes and the mirror membranes is 0.8 /spl mu/m. Torsional micromirror arrays are used as spatial light modulators, and have potential applications in projection display systems, pattern generators for maskless lithography systems, optical spectroscopy, and optical communication systems. In principle, the membrane transfer bonding technique can be applied for integration of CMOS circuits with any type of transducer that consists of membranes and that benefits from the use of high temperature annealed or monocrystalline materials. These types of devices include thermal infrared detectors, RF-MEMS devices, tuneable vertical cavity surface emitting lasers (VCSEL) and other optical transducers.  相似文献   

5.
Xurography: rapid prototyping of microstructures using a cutting plotter   总被引:2,自引:0,他引:2  
This paper introduces xurography, or "razor writing," as a novel rapid prototyping technique for creating microstructures in various films. This technique uses a cutting plotter traditionally used in the sign industry for cutting graphics in adhesive vinyl films. A cutting plotter with an addressable resolution of 10 /spl mu/m was used to cut microstructures in various films with thicknesses ranging from 25 to 1000 /spl mu/m. Positive features down to 35 /spl mu/m and negative features down to 18 /spl mu/m were cut in a 25 /spl mu/m thick material. Higher aspect ratios of 5.2 for positive features and 8 for negative features were possible in a 360 /spl mu/m thick material. A simple model correlating material properties to minimum feature size is introduced. Multilayered microstructures cut from pressure sensitive and thermal activated adhesive films were laminated in less than 30 min without photolithographic processes or chemicals. Potential applications of these microstructures are explored including: shadow masking, electroplating, micromolds for PDMS, and multilayered three-dimensional (3-D) channels. This inexpensive method can rapidly prototype microfluidic devices or tertiary fluid connections for higher resolution devices. [1488].  相似文献   

6.
This paper reports on novel polysilicon surface-micromachined one-dimensional (1-D) analog micromirror arrays fabricated using Sandia's ultraplanar multilevel MEMS technology-V (SUMMiT-V) process. Large continuous DC scan angle (23.6/spl deg/ optical) and low-operating voltage (6 V) have been achieved using vertical comb-drive actuators. The actuators and torsion springs are placed underneath the mirror (137/spl times/120 /spl mu/m/sup 2/) to achieve high fill-factor (91%). The measured resonant frequency of the mirror ranges from 3.4 to 8.1 kHz. The measured DC scanning characteristics and resonant frequencies agree well with theoretical values. The rise time is 120 /spl mu/s and the fall time is 380 /spl mu/s. The static scanning characteristics show good uniformity (相似文献   

7.
An optical waveguide MEMS switch fabricated on an indium phosphide (InP) substrate for operation at 1550 nm wavelength is presented. Compared to other MEMS optical switches, which typically use relatively large mirrors or long end-coupled waveguides, our device uses a parallel switching mechanism. The device utilizes evanescent coupling between two closely-spaced waveguides fabricated side by side. Coupling is controlled by changing the gap and the coupling length between the two waveguides via electrostatic pull-in. This enables both optical switching and variable optical coupling at voltages below 10 V. Channel isolation as high as -47 dB and coupling efficiencies of up to 66% were obtained with switching losses of less than 0.5 dB. We also demonstrate voltage-controlled variable optical coupling over a 17.4 dB dynamic range. The devices are compact with 2 /spl mu/m/spl times/2 /spl mu/m core cross section and active area as small as 500 /spl mu/m/spl times/5 /spl mu/m. Due to the small travel range of the waveguides, fast operation is obtained with switching times as short as 4 /spl mu/s. Future devices can be scaled down to less than 1 /spl mu/m/spl times/1 /spl mu/m waveguide cross-sectional area and device length less than 100 /spl mu/m without significant change in device design.  相似文献   

8.
A microplastic lens array has been successfully constructed on top of a 500-/spl mu/m-thick PC (Polycarbonate film) by using a micro hot intrusion process. A single-layer LIGA process is used to fabricate the high-aspect-ratio nickel mold insert that has circular hole patterns of 80 /spl mu/m in diameter and 200 /spl mu/m in depth. Under the hot intrusion process, plastic material can be intruded into these circular-shape holes and stopped at desired depth under elevated temperature and pressure to fabricate microlenses. By adjusting the embossing load, temperature and time, the curvature and height of the lens are controllable when the same mold insert is used. The optical properties of these microlenses have been characterized and the average radius of curvature is found as 41.4 /spl mu/m with a standard deviation of 1.05 /spl mu/m. Experimental characterization and theoretical model are conducted and developed for the micro-intrusion process in terms of the radius of curvature and height of the lenses and they correspond well with experimental data within 5% of variations. The focusing capability of the lenses is demonstrated by comparing the images of laser light with and without using the lenses. When the projection screen is placed 200 /spl mu/m away from the lens, the full-width at half-maximum (FWHM) for the lens is 110 /spl mu/m while the original FWHM of the optical fiber is 300 /spl mu/m.  相似文献   

9.
This paper reports on design and fabrication aspects of a new microelectromechanical series switch for switching dc and RF signals. The switch consists of a flexible S-shaped film with the switching contact, rolling between a top and a bottom electrode in electrostatic touch-mode actuation. This design allows a low actuation voltage independent of the contact distance in the off-state. With a large contact distance, large overlapping switching contact areas are possible by obtaining a high off-state isolation. The RF transmission line and the MEMS part of the switch are fabricated on separate wafers, allowing an implementation of the switch with different RF substrates. The final assembly is done on device level for the first prototypes, even though the design provides the possibility of an assembly by full wafer bonding, leading to a near-hermetic package integrated switch. The measured prototype actuation voltages are 12 V to open and 15.8 V to close the contacts, with a resistance of 275 m/spl Omega/ of each contact at an estimated contact force of 102 /spl mu/N. The measured RF isolation with a contact distance of 14.2 /spl mu/m is better than -45 dB up to 2 GHz and -30 dB at 15 GHz, at a large nominal switching contact area of 3500 /spl mu/m/sup 2/.  相似文献   

10.
This paper reports a new actuating method of a micromirror with piston motion by the electrowetting effect. Liquid metals drops (LMD), gallium and mercury, instead of conventional electrolyte solution, are used in the electrowetting experiments to reduce the vapor pressure and to increase the conductivity. An approximate formula of LMD height changes versus actuated voltage is deduced and the electrowetting setup is improved for actuating the mirror. The actuating performance of the LMD as a pivot is investigated. The hysteresis of contact angle is effectively minimized with argon sputtering the surface of the insulating layer, which makes the deformation of the LMD highly repeatable. The frequency response (0.01 Hz-3 kHz) and 6 vibration modes of the mercury drop are observed. The maximum acceleration of the drop during the actuation is 300 g (g=9/spl middot/8 m/s/sup 2/). We fabricated a 1000 /spl mu/m/spl times/1000 /spl mu/m/spl times/20 /spl mu/m, 50 /spl mu/g micromirror and an actuating circuit based on the electrowetting of liquid metal. With the LMD confine spot, a mercury drop of 500 /spl mu/m in diameter is placed between the mirror and the actuating electrodes. A 440-Hz sinusoidal voltage of 75 V actuates the micromirror, with a maximum of 60 /spl mu/m displacement.  相似文献   

11.
This paper reports a microfluidic device that integrates electrical and optical features required for field-portable water-chemistry testing by discharge spectroscopy. The device utilizes a dc-powered spark between a metal anode and a liquid cathode as the spectral source. Impurities are sputtered from the water sample into the microdischarge and characteristic atomic transitions due to them are detected optically. A blazed grating is used as the dispersion element. The device is fabricated from stacked glass layers, and is assembled and used with a charge-coupled device (CCD) sensing element to distinguish atomic spectra. Two structural variations and optical arrangements are reported. Detection of Cr and other chemicals in water samples has been successfully demonstrated with both devices. The angular resolution in terms of angular change per unit variation in wavelength (/spl part//spl theta///spl part//spl lambda/) is experimentally determined to be approximately 0.10 rad//spl mu/m, as opposed to the idealized theoretical estimate of 0.22 rad//spl mu/m. This is because the microdischarge is uncollimated and not a point source. However, this is sufficient angular resolution to allow critical spectra of metal impurities to be distinguished.  相似文献   

12.
This paper describes a wet-etching technique that solves the major difficulty of fine patterning a c-axis oriented polycrystalline ZnO film. The technique uses aqueous NH/sub 4/Cl with electrolytically added copper ions and convection flow, and for the first time, allows the ZnO film to be etched 1) with controlled etch rate ratio between the vertical and horizontal etch rates and 2) with controlled etch-front slope. The ratio between the vertical and horizontal etch rates is as high as 20 to 1, while the angle between the sidewall etch-front surface and the substrate surface can be electrically controlled between 73/spl deg/ and 106/spl deg/. Also, ZnO films can now be patterned to fine features (even sub-/spl mu/m level) with a wet etchant. The electroless galvanic etching technique described in this paper produces uniform etching over a large area (larger than 3" in diameter).  相似文献   

13.
Surface micromachined metallic microneedles   总被引:1,自引:0,他引:1  
In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were fabricated, packaged and characterized. The microneedles were fabricated using electroplated metals including palladium, palladium-cobalt alloys and nickel as structural materials. The microneedles were 200 mm-2.0 cm in length with a cross-section of 70-200 /spl mu/m in width and 75-120 /spl mu/m in height, with a wall thickness of 30-35 /spl mu/m. The microneedle arrays were typically 9.0 mm in width and 3.0 mm in height with between 3 and 17 needles per array. Using water as the fluid medium, the average inlet pressure was found to be 30.0 KPa for a flow rate of 1000 /spl mu/L/h and 106 KPa for a flow rate 4000 /spl mu/L/h.  相似文献   

14.
A fast, effective process using hydrogen annealing is introduced to perform profile transformation on silicon-on-insulator (SOI) and to reduce sidewall roughness on silicon surfaces. By controlling the dimensions of as-etched structures, microspheres with 1 /spl mu/m radii, submicron wires with 0.5 /spl mu/m radii, and a microdisk toroid with 0.2 /spl mu/m toroidal radius have been successfully demonstrated on SOI substrates. Utilizing this technique, we also observe the root-mean-square (rms) sidewall roughness dramatically reduced from 20 to 0.26 nm. A theoretical model is presented to analyze the profile transformation, and experimental results show this process can be engineered by several parameters including temperature, pressure, and time.  相似文献   

15.
An electrothermally driven long stretch microdrive (LSMD) is presented for planar rectilinear motions in hundreds of micrometers. Design concept is based on connecting several actuation units in series to form a cascaded structure to accumulate relative displacement of each unit, and two cascaded structures are further arranged in parallel by a connection bar to double output force. The proposed area-saving design features monolithic compliant structure in compact arrangement to achieve long stroke. In experiments, the maximum reversible operating voltage is 3 V. In addition, the voltage-displacement relation shows good linearity within /spl plusmn/5% in 0.5-3.0 V. Fabricated nickel LSMD can generate displacement up to 215 /spl mu/m (W=8 /spl mu/m, /spl theta/=0.2/spl deg/, D=34 /spl mu/m) at 3 dc volts (669 mW). The maximum operation temperatures of tested LSMDs at 3 V are below 300 /spl deg/C. Output forces up to 495 /spl mu/N are measured by in situ passive micromechanical test beams. The LSMD can be operated at 100 Hz without degradation on displacement. Two geometrical design parameters, bent angle and constraint bar width, are also investigated analytically and experimentally.  相似文献   

16.
This paper reports on a batch mode planar pattern transfer process for bulk ceramics, glass, and other hard, brittle, nonconductive materials suitable for micromachined transducers and packages. The process is named LEEDUS, as it combines lithography, electroplating, batch mode micro electro-discharge machining (/spl mu/EDM) and batch mode micro ultrasonic machining (/spl mu/USM). An electroplating mold is first created on a silicon or metal wafer using standard lithography, then using the electroplated pattern as an electrode to /spl mu/EDM a hard metal (stainless steel or WC/Co) tool, which is finally used in the /spl mu/USM of the ceramic substrate. A related process (SEDUS) uses serial /spl mu/EDM and omits lithography for rapid prototyping of simple patterns. Feature sizes of 25 /spl mu/m within a 4.5/spl times/4.5 mm/sup 2/ die have been micromachined on glass-mica (Macor) ceramic plates with 34 /spl mu/m depth. The ultrasonic step achieves 18 /spl mu/m/min. machining rate, with a tool wear ratio of less than 6% for the stainless steel microtool. Other process characteristics are also described. As a demonstration, octagonal and circular spiral shaped in-plane actuators were fabricated from bulk lead zirconate titanate (PZT) plate using the LEEDUS/SEDUS process. A device of 20 /spl mu/m thickness and 450 /spl mu/m/spl times/420 /spl mu/m footprint produces a displacement of /spl ap/2/spl mu/m at 40 V.  相似文献   

17.
This paper describes a new fabrication technique developed for the construction of large area mirror membranes via the transfer of wafer-scale continuous membranes from one substrate to another. Using this technique, wafer-scale silicon mirror membranes have been successfully transferred without the use of sacrificial layers such as adhesives or polymers. This transfer technique has also been applied to the fabrication and transfer of 1 /spl mu/m thick corrugated membrane actuators. These membrane actuators consist of several concentric-ring-type corrugations constructed within a polysilicon membrane. A typical polysilicon actuator membrane with an electrode gap of 1.5 /spl mu/m, fabricated using the wafer-scale transfer technique, shows a vertical deflection of 0.4 /spl mu/m at 55 V. The mirror membranes are constructed from single-crystal silicon, 10 cm in diameter, and have been successfully transferred in their entirety. Using a white-light interferometer, the measured average peak-to-valley surface figure error for the transferred single-crystal silicon mirror membranes is approximately 9 nm as measured over a 1 mm/sup 2/ membrane area. The wafer-scale membrane transfer technique demonstrated in this paper has the following benefits over previously reported transfer techniques: 1) No postassembly release process to remove sacrificial polymers is required. 2) The bonded interface is completely isolated from any acid, etchant, or solvent during the transfer process, ensuring a clean and uniform membrane surface. 3) Our technique is capable of transferring large, continuous membranes onto substrates.  相似文献   

18.
A micromechanical flow sensor for microfluidic applications   总被引:2,自引:0,他引:2  
We fabricated a microfluidic flow meter and measured its response to fluid flow in a microfluidic channel. The flow meter consisted of a micromechanical plate, coupled to a laser deflection system to measure the deflection of the plate during fluid flow. The 100 /spl mu/m square plate was clamped on three sides and elevated 3 /spl mu/m above the bottom surface of the channel. The response of the flow meter was measured for flow rates, ranging from 2.1 to 41.7 /spl mu/L/min. Several fluids, with dynamic viscosities ranging from 0.8 to 4.5/spl times/10/sup -3/ N/m, were flowed through the channels. Flow was established in the microfluidic channel by means of a syringe pump, and the angular deflection of the plate monitored. The response of the plate to flow of a fluid with a viscosity of 4.5/spl times/10/sup -3/ N/m was linear for all flow rates, while the plate responded linearly to flow rates less than 4.2 /spl mu/L/min of solutions with lower dynamic viscosities. The sensitivity of the deflection of the plate to fluid flow was 12.5/spl plusmn/0.2 /spl mu/rad/(/spl mu/L/min), for a fluid with a viscosity of 4.5/spl times/10/sup -3/ N/m. The encapsulated plate provided local flow information along the length of a microfluidic channel.  相似文献   

19.
A monolithic three-axis micro-g resolution silicon capacitive accelerometer system utilizing a combined surface and bulk micromachining technology is demonstrated. The accelerometer system consists of three individual single-axis accelerometers fabricated in a single substrate using a common fabrication process. All three devices have 475-/spl mu/m-thick silicon proof-mass, large area polysilicon sense/drive electrodes, and small sensing gap (<1.5 /spl mu/m) formed by a2004 sacrificial oxide layer. The fabricated accelerometer is 7/spl times/9 mm/sup 2/ in size, has 100 Hz bandwidth, >/spl sim/5 pF/g measured sensitivity and calculated sub-/spl mu/g//spl radic/Hz mechanical noise floor for all three axes. The total measured noise floor of the hybrid accelerometer assembled with a CMOS interface circuit is 1.60 /spl mu/g//spl radic/Hz (>1.5 kHz) and 1.08 /spl mu/g//spl radic/Hz (>600 Hz) for in-plane and out-of-plane devices, respectively.  相似文献   

20.
A high-sensitivity, low-noise in-plane (lateral) capacitive silicon microaccelerometer utilizing a combined surface and bulk micromachining technology is reported. The accelerometer utilizes a 0.5-mm-thick, 2.4/spl times/1.0 mm/sup 2/ proof-mass and high aspect-ratio vertical polysilicon sensing electrodes fabricated using a trench refill process. The electrodes are separated from the proof-mass by a 1.1-/spl mu/m sensing gap formed using a sacrificial oxide layer. The measured device sensitivity is 5.6 pF/g. A CMOS readout circuit utilizing a switched-capacitor front-end /spl Sigma/-/spl Delta/ modulator operating at 1 MHz with chopper stabilization and correlated double sampling technique, can resolve a capacitance of 10 aF over a dynamic range of 120 dB in a 1 Hz BW. The measured input referred noise floor of the accelerometer-CMOS interface circuit is 1.6/spl mu/g//spl radic/Hz in atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号