首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
A boundary element method for the solution of Stokes equations governing creeping flow or Stokes flow in the interior of an arbitrary two-dimensional domain is presented. A procedure for introducing pressure data on the boundary of the domain is also included and the integral coefficients of the resulting linear algebraic equations are evaluated analytically. Calculations are performed in a circular domain using a variety of different boundary conditions, including a combination of the fluid velocity and the pressure. Results are presented both on the boundary and inside the solution domain in order to illustrate that the boundary element method developed here provides an efficient technique, in terms of accuracy and convergence, to investigate Stokes flow numerically.  相似文献   

2.
This paper presents a theory for the static analysis of laterally loaded piles embedded in multi-layered transversely isotropic soils. Boundary element method (BEM) is applied to the pile–soil model where the floating pile is modeled as a Bernoulli–Euler beam using the finite difference method and the layered soil is represented utilizing a decoupled analytical layer-element solution as a kernel function for its high accuracy and efficiency. Several numerical examples presented reveal that the pile behavior is affected synthetically by both transverse isotropy and stratified character of soil and the pile's size and physical properties.  相似文献   

3.
边界元法在膜结构与风耦合研究中的应用   总被引:2,自引:0,他引:2  
徐闻  叶继红  单建 《振动与冲击》2009,28(1):123-130
膜结构是一种风敏感性结构,结构与风的耦合作用不容忽视。本文将膜结构所处的风场简化为不可压缩势流,运用边界元法求解绕流后作用在膜结构上的风压,然后计算在风压作用下膜结构产生的变形,修正膜结构形状,再次求解变形后膜结构周围流场及作用在其上的风压,这样依次迭代,直至得到收敛的解。这种方法的有效性通过典型算例和其他方法计算结果的对比得到验证。变换膜结构的矢跨比、初始预张力及风场平均风速,研究参数变化对流固耦合的影响,为膜结构抗风研究与工程实践提供参考。  相似文献   

4.
In this paper, a new methodology for analyzing wave propagation problems, originally presented and checked by the authors for one-dimensional problems [18], is extended to plane strain elastodynamics. It is based on a Laplace domain boundary element formulation and Duhamel integrals in combination with the convolution quadrature method (CQM) [13], [14]. The CQM is a technique which approximates convolution integrals, in this case the Duhamel integrals, by a quadrature rule whose weights are determined by Laplace transformed fundamental solutions and a multi-step method. In order to investigate the accuracy and the stability of the proposed algorithm, some plane wave propagation and interaction problems are solved and the results are compared to analytical solutions and results from finite element calculations. Very good agreement is obtained. The results are very stable with respect to time step size. In the present work only multi-region boundary element analysis is discussed, but the presented technique can easily be extended to boundary element – finite element coupling as will be shown in subsequent publications.  相似文献   

5.
As arrangements, the fundamental solutions of anisotropic convective diffusion equations of transient incompressible viscous fluid flow and boundary elements analysis of the diffusion equation are presented. Secondly, by considering that convective diffusion equations and Navier-Stokes equations are mathematical formulations of mass and momentum conservation law respectively, and that consequently, both physical contents and equation styles are analogous, boundary integral formulations for Navier-Stokes equations are proposed on the basis of formulation of diffusion equations.  相似文献   

6.
The solution of a Dirichlet boundary value problem of plane isotropic elasticity by the boundary integral equation (BIE) of the first kind obtained from the Somigliana identity is considered. The logarithmic function appearing in the integral kernel leads to the possibility of this operator being non-invertible, the solution of the BIE either being non-unique or not existing. Such a situation occurs if the size of the boundary coincides with the so-called critical (or degenerate) scale for a certain form of the fundamental solution used. Techniques for the evaluation of these critical scales and for the removal of the non-uniqueness appearing in the problems with critical scales solved by the BIE of the first kind are proposed and analysed, and some recommendations for BEM code programmers based on the analysis presented are given.  相似文献   

7.
Partitioned Newton type solution strategies for the strongly coupled system of equations arising in the computational modelling of fluid–solid interaction require the evaluation of various coupling terms. An essential part of all ALE type solution strategies is the fluid mesh motion. In this paper, we investigate the effect of the terms which couple the fluid flow with the fluid mesh motion on the convergence behaviour of the overall solution procedure. We show that the computational efficiency of the simulation of many fluid–solid interaction processes, including fluid flow through flexible pipes, can be increased significantly if some of these coupling terms are calculated exactly.  相似文献   

8.
A unifying procedure to numerically compute enrichment functions for elastic fracture problems with the extended finite element method is presented. Within each element that is intersected by a crack, the enrichment function for the crack is obtained via the solution of the Laplace equation with Dirichlet and vanishing Neumann boundary conditions. A single algorithm emanates for the enrichment field for multiple cracks as well as intersecting and branched cracks, without recourse to special cases, which provides flexibility over the existing approaches in which each case is treated separately. Numerical integration is rendered to be simple—there is no need for partitioning of the finite elements into conforming subdivisions for the integration of discontinuous or weakly singular kernels. Stress intensity factor computations for different crack configurations are presented to demonstrate the accuracy and versatility of the proposed technique. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We developed a stable OpenFOAM solver for Immersed Boundary Method based on direct forcing and regularized delta function. The soft-sphere model and a lubrication model were implemented to consider particle–particle collision in a viscous flow. We proposed a fluid–structure interaction (FSI) coupling method to accurately calculate the fluid forcing term and particle velocity. Our solver was validated for fixed and moving bodies, including rotation. The accuracy of various FSI schemes was evaluated in predicting the solid and fluid flow behavior in a viscous flow. It was demonstrated that neglecting or simplifying the fluid momentum change affects the accuracy of the solid velocity and fluid flow dynamic; for higher solid-to-fluid density ratios, a larger deviation was predicted. Furthermore, the FSI schemes highly influenced the behavior of the formed vortices.The solver was validated to predict the effective restitution coefficient of particles in a viscous flow as a function of the Stokes number. We also thoroughly analyzed the dynamic flow behavior of colliding particles through the pressure and velocity field and fluid force. This analysis helped us accurately determine the rebound velocity of particles in case of high Stokes numbers when the effect of viscous force is significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号