首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
CVD金刚石形核的研究   总被引:1,自引:0,他引:1  
在钢渗铬层和硅片上进行了化学气相沉积金刚石膜,发现在渗铬层上形成的金刚石膜以球形金刚石为主;用高倍扫描电子显微镜分析显示,渗铬层上的球形金刚石是由大量二次晶核长大的微晶金刚石和非晶碳组成.  相似文献   

2.
The undoped, polycrystalline diamond films were deposited on tungsten wire substrates by hot filament chemical vapor deposition (HF CVD), using a precursor gas mixture of methanol with excess of hydrogen. The morphology and quality of the as-deposited films were monitored by scanning electron microscopy (SEM) and Raman spectroscopy. The surface morphology analyzed by SEM resembles a continuous and well faceted diamond film. Raman results showed essential differences in qualities of diamond films grown at different hydrocarbon concentrations. The electrochemical properties of diamond electrodes were examined with cyclic voltammetry (CV) and the electrochemical impedance spectroscopy (EIS). The CV experiments revealed a large chemical window (>~4.3 V) of undoped diamond. Analysis of the ferrocyanide-ferricyanide couple at a diamond electrode suggests some extent of electrochemical quasi-reversibility, but the rates of charge transfer across the diamond substrate interface vary with diamond quality.  相似文献   

3.
Reduced melting temperature of nanoparticles is utilized to deposit thin polycrystalline silicon (c-Si) films on plastic substrates by using a laser beam without damaging the substrate. An aqueous dispersion of 5 nm silicon nanoparticles was used as precursor. A Nd:YAG (1064 nm wavelength) laser operating in continuous wave (CW) mode was used for thin film formation. Polycrystalline Si films were deposited on flexible as well as rigid plastic substrates in both air and argon ambients. The films were analyzed by optical microscopy for film formation, scanning electron microscopy (SEM) for microstructural features, energy dispersive spectroscopy (EDS) for impurities, X-ray photoelectron spectroscopy (XPS) for composition and bond information of the recrystallized film and Raman spectroscopy for estimating shift from amorphous to more crystalline phase. Raman spectroscopy showed a shift from amorphous to more crystalline phases with increasing both the laser power and irradiation time during laser recrystallization step.  相似文献   

4.
Field emission from diamond and diamond-like carbon thin films deposited on silicon substrates has been studied. The diamond films were synthesized using hot filament chemical vapor deposition technique. The diamond-like carbon films were deposited using the radio frequency chemical vapor deposition method. Field emission studies were carried out using a sphere-to-plane electrode configuration. The results of field emission were analyzed using the Fowler-Nordheim model. It was found that the diamond nucleation density affected the field emission properties. The films were characterized using standard scanning electron microscopy, Raman spectroscopy, and electron spin resonance techniques. Raman spectra of both diamond and diamond-like films exhibit spectral features characteristic of these structures. Raman spectrum for diamond films exhibit a well-defined peak at 1333cm?1. Asymmetric broad peak formed in diamond-like carbon films consists of D-band and G-band around 1550 cm?1 showing the existence of both diamond (sp3 phase) and graphite (sp2 phase) in diamond-like carbon films.  相似文献   

5.
Diamond-like carbon films (DLC) and silicon doped diamond-like carbon films were deposited on Ni substrate by cathodic micro-arc discharge at room temperature in aqueous solutions. The deposit potential was 130 V. The structure of the films was characterized by a scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Raman spectra and XPS analysis demonstrated that the films were diamond-like carbon clearly. SEM observation showed that the DLC films were uniform and the thickness was about 200 nm. Potentiodynamic polarization curve indicated the corrosion resistance of the Ni substrate was markedly improved by DLC films.  相似文献   

6.
The polycrystalline undoped diamond layers were deposited on tungsten wire substrates by using hot filament chemical vapor deposition (HFCVD) technique. As a working gas the mixture of methanol in excess of hydrogen was used. The morphologies and quality of as-deposited films were monitored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. The electrochemical activity of the obtained diamond layers was monitored by using cyclic voltammetry measurements. Analysis of the ferrocyanide–ferricyanide couple at undoped diamond electrode suggests that electrochemical reaction at diamond electrode has a quasireversibile character. The ratio of the anodic and cathodic peak currents was always close to unity. In this work we showed that the amorphous carbon admixture in the CVD diamond layer has a crucial influence on its electrochemical performance.  相似文献   

7.
利用自行研制的石英钟罩式微波等离子体化学气相沉积金刚石薄膜装置,研究了硅基片的不同预处理方式对沉积结果的影响。通过扫描电子显微镜形貌观察和喇曼谱分析表明,基片预处理能提高形核密度;用于预处理的金刚石研磨膏的粒度不同,影响金刚石薄膜沉积时的形核密度、晶形和薄膜的质量;表面划痕对沉积金刚石薄膜的影响具有双重性。  相似文献   

8.
在硅和硬质合金基体上,用热丝CVD法生长出金刚石薄膜。利用X衍射、拉曼谱和扫描电镜对金刚石薄膜的结构形貌进行了检测,并与天然金刚石对比分析。  相似文献   

9.
过渡金属Fe、Ni和Co对金刚石膜表面腐蚀作用的研究   总被引:6,自引:2,他引:6  
采用电子增强DVD和直流热阴极PCVD方法制备出金刚石膜,在具空条件下用高温热灯丝加热方法研究了过渡金属Fe、Ni、和Co对金刚石膜表面的腐蚀作用,并对腐蚀后的金刚石膜表面和金属表面进行了XRD和Raman光谱测量。结果表明:过渡金属Fe、Ni和Co对金刚石表面具有明显的腐蚀作用,其中Fe的腐蚀作用最好。经过过渡金属腐蚀后金刚石表面和金属表面形成了非金刚石碳相而没有发现过渡金属碳化物。  相似文献   

10.
In this paper,Me (Me=Cr,Zr) and N co-doped diamond like carbon (DLC-MeN) composite films were prepared on cemented carbide substrates by pulsed bias arc ion plating.The effect of nitrogen flow rates on the microstructure and properties of the films were investigated by X-ray photoelectron spectroscopy (XPS),Raman spectra,grazing incident X-ray diffraction (GIXRD),high resolution transmission electron microscopy (HRTEM) and nano-indentation.Raman,GIXRD and HRTEM results show that the deposited films are nano...  相似文献   

11.
Cheng Q  Xu S  Long J  Huang S  Guo J 《Nanotechnology》2007,18(46):465601
Silicon carbide films with different carbon concentrations x(C) have been synthesized by inductively coupled plasma chemical vapor deposition from a SiH(4)/CH(4)/H(2) gas mixture at a low substrate temperature of 500?°C. The characteristics of the films were studied by x-ray photoelectron spectroscopy, x-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared absorption spectroscopy, and Raman spectroscopy. Our experimental results show that, at x(C) = 49?at.%, the film is made up of homogeneous nanocrystalline cubic silicon carbide without any phase of silicon, graphite, or diamond crystallites/clusters. The average size of SiC crystallites is approximately 6?nm. At a lower value of x(C), polycrystalline silicon and amorphous silicon carbide coexist in the films. At a higher value of x(C), amorphous carbon and silicon carbide coexist in the films.  相似文献   

12.
Photoluminescence and Raman spectroscopy were employed to investigate the broad band luminescence in thin diamond films grown on a silicon substrate by the HF CVD technique. The broad band luminescence with a maximum emission at 1.8–2 eV observed for CVD diamonds is characteristic for amorphous carbon with sp2-hybridized carbon bonds. As was shown by the Raman spectroscopy our diamond layer contained certain amounts of amorphous carbon phase and diamond nanocrystals which were the source of an additional energy state within the diamond energy gap. The experimental results precluded the possibility of broad band luminescence being due to the electron–lattice interaction. The amorphous carbon and diamond nanocrystals admixture in polycrystalline diamond layer introduced a defect state in the energy gap not in the form of point defects but rather in the form of a line or extended defects. In consequence these extended defects were responsible for the broad PL spectrum in the CVD diamond films.  相似文献   

13.
Microwave plasma chemical vapour-deposited (CVD) process has been used to grow polycrystalline diamond films over silicon substrates. Diamond-like carbon (DLC) thin films were grown over silicon substrates using a microwave plasma disc reactor. Reactant gases of CH4 and H2 were used in both CVD processes. Some preliminary feasibility tests were performed on the possible applicability of diamond and diamond-like carbon thin films for space-protective applications against artificially simulated electrically actuated plasma drag hypervelocity impact of olivine particles. As-deposited films were analysed by Raman for their chemical nature. The morphology and dimensions of hypervelocity impact craters in diamond and DLC films was also studied by scanning electron microscopy (SEM) and optical microscopy. The velocity of debris particles was determined by high-speed photography using a streak camera. The size of the impact particles was determined by measuring the size of the holes formed in the mylar sheet mounted just above the target diamond and DLC film/silicon and coordinates of the impact sites were determined using the same apparatus. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
Thermal oxidation characteristics of chemical vapour deposited diamond films were studied at 973 K and at different oxygen potentials by analysing the samples before and after partial oxidation using optical and scanning electron microscopy, X-ray diffraction, and Raman and luminescence spectroscopy. On oxidation, diamond films attached to the silicon wafers undergo a, colour change. Oxidation proceeds by etching pits on the diamond grains in the films. There is no evidence of any phase transformation of diamond to non-diamond carbon forms. The concentration of defects, particularly neutral vacancies, increase on oxidation. Possible routes for the reaction between diamond and oxygen are postulated.  相似文献   

15.
Siqing He 《Thin solid films》2009,517(19):5625-100
Carbon films containing diamond particles were deposited onto a Si (100) substrate by electrolysis of methanol under a direct current potential of 1200 V, with a current density of about 52 mA/cm2, at atmospheric pressure and in the temperature range of 50-55 °C. The surface morphology, microstructure and crystalline structure of the deposited films were characterized by scanning electron microscopy (SEM), Fourier transformation infrared (FTIR) spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM) respectively. The SEM images show that the films are formed by particle clusters and a surrounding glassy phase. The Raman spectra of the films indicate that the particle clusters are composed of diamond and that the glassy phase is composed of amorphous carbon. The FTIR measurements suggest the existence of hydrogen which is mainly bonded to the sp3 carbon in the films. The transmission electron diffraction patterns further indicate that the particles in the films consist of single-crystalline diamond. Both TEM and Raman measurements have confirmed unambiguously the formation of diamond crystals in the deposit, although the particles are not uniformly distributed on the entire surface.  相似文献   

16.
The article presents results of structural studies of polycrystalline diamond thin films deposited by hot filament CVD on silicon substrates. The films were characterized using Scanning Electron Microscopy (SEM), Raman Spectroscopy (RS), Electron Backscattered Diffraction (EBSD), Energy Dispersive Spectroscopy (EDS) and Secondary Ion Mass Spectroscopy (SIMS). Both the EBSD patterns and Raman spectra confirm that the grains visible in the electron micrographs are diamond micro-crystallites. The residual stress in the films is found to be in the range between −4.29 GPa and −0.56 GPa depending on the sample thickness. No evidence of lonsdalite and graphite has been registered in the polycrystalline material of the investigated samples. Evidence of the existence of silicon carbide at the diamond/silicon interface is presented. It is also suggested that an amorphous carbonaceous film covers the silicon surface in the regions of holes in the thin diamond layers.  相似文献   

17.
电化学沉积DLC膜及其表征   总被引:5,自引:1,他引:4  
采用电化学沉积方法,甲醇有机溶剂作碳源,在直流电源作用下在单晶硅表面沉积得到碳薄膜。薄膜不溶于苯、丙酮等有机溶剂,具有较高的硬度(16GPa左右),用AFM、Raman和FTIR分析手段对该薄膜表面形貌和结构进行表征,Raman和FTIR结果表明电化学沉积得到的是含氢的类金刚石碳薄膜。通过研究样品薄膜的XPS和XAES谱图特征,进一步证实薄膜是DLC薄膜,并用线性插入法估算出样品薄膜中SP^3的相对含量为60%,同时推测了电化学沉积DLC薄膜的生长机理。  相似文献   

18.
Diamond films were deposited on silicon and tungsten carbide substrates in open air through laser-assisted combustion synthesis. Laser-induced resonant excitation of ethylene molecules was achieved in the combustion process to promote diamond growth rate. In addition to microstructure study by scanning electron microscopy, Raman spectroscopy was used to analyze the phase purity and residual stress of the diamond films. High-purity diamond films were obtained through laser-assisted combustion synthesis. The levels of residual stress were in agreement with corresponding thermal expansion coefficients of diamond, silicon, and tungsten carbide. Diamond-film purity increases while residual stress decreases with an increasing film thickness. Diamond films deposited on silicon substrates exhibit higher purity and lower residual stress than those deposited on tungsten carbide substrates.  相似文献   

19.
In order to investigate the effects of argon and oxygen on diamond synthesis, the behaviors of diamond deposition using microwave plasma chemical vapor deposition method have been studied by varying the concentrations of argon and oxygen in the methane-hydrogen gas mixture. Diamond films were deposited on silicon wafer under the conditions of substrate temperatures: 1073 1173 K, total reaction pressure: 5333 Pa (40 Torr), methane concentrations: 0.5 5.0%, and they were characterized by scanning electron microscopy, Raman spectroscopy and optical emission spectroscopy. The deposition rates of diamond films were enhanced by adding argon into the methane-hydrogen system, but nondiamond carbon phases in the films also increased. It resulted from the increase of hydrocarbon radicals in the plasma. As oxygen was added, the quality of deposited diamond films was improved due to the decrease of C2 radicals and increase of OH radicals in the plasma. Simultaneous addition of 0.3% oxygen and 20% argon has been able to effectively suppress the formation of nondiamond carbon components and increase the deposition rate of diamond films. It appears that the ionized argon (Ar+) and excited argon atoms (Ar*) may activate the various chemical species and promote the reactions between the gas phase species and oxygen in the plasma.  相似文献   

20.
采用热丝化学气相沉积法,改变工作气压和偏流,在硅基片上沉积了高掺硼金刚石膜。利用扫描电镜(SEM)、拉曼光谱和X射线衍射仪对沉积的金刚石膜表面形貌和结构进行表征。结果显示:当气体压强从3kPa降低到1.5kPa时,金刚石膜有较平的表面形貌和和较好的晶形,薄膜的晶体性质得到良好的改善。但是继续降气体压强,从1.5kPa到0.5kPa时,却呈现出相反的趋势。固定气体压强(1.5kPa),改变偏流,结果表明:适当的偏流(3A)可以改善掺硼金刚石的质量,偏流较高会导致薄膜中非金刚石相增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号