首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
常胜 《中州煤炭》2020,(7):91-93,97
为了提高煤矿瓦斯抽采率,节约瓦斯抽采时间,分析了非均质煤层瓦斯分布特征及钻孔抽采瓦斯运移规律,采用透气性系数研究了非均质煤层瓦斯压力分布特点;分析了非均质煤层单钻孔瓦斯压力分布、原始瓦斯压力、原始透气性系数对有效抽采半径的影响。研究对指导现场瓦斯抽采以及促进煤矿安全生产具有重要意义。  相似文献   

2.
针对煤层钻孔有效抽采半径表征不明晰的问题,首先确定了有效抽采半径所对应的瓦斯压力临界值,之后采用钻孔径向流场瓦斯压力表达式计算了钻孔周围瓦斯压力变化规律,通过现场实测数据验证了计算结果的可靠性,分析了抽采负压、透气性系数、钻孔半径、吸附常数等对煤层瓦斯压力分布的敏感性,最后根据临界瓦斯压力指标确定出了有效抽采半径,通过现场瓦斯瓦斯含量检测数据进行了验证,并推导了不同预抽时间下钻孔有效抽采半径与不同原始瓦斯压力的函数关系。研究结果表明,理论解算的瓦斯压力以及有效抽采半径值均与现场实测数据保持基本一致,瓦斯压力与抽采时间呈反比,与至钻孔的距离呈正比;抽采负压、透气性系数、钻孔半径、吸附常数b均与瓦斯压力呈负相关,吸附常数a则与瓦斯压力呈正相关;有效抽采半径随着抽采时间增加而增加,二者符合对数函数类型。通过推导出的有效抽采半径、预抽时间以及原始瓦斯压力函数关系式,能够方便快速计算得到对应的有效抽采半径,并确定合理的钻孔间距,对井下煤层瓦斯抽采钻孔精细化设计工作具有一定的理论意义。  相似文献   

3.
钻孔瓦斯抽采半径主要与煤层瓦斯含量、透气性系数、抽采钻孔直径及负压、抽采目的和时间等因素有关。传统的抽采半径确定方法对于透气性较好、煤层测压条件较佳时可能得到考察结果,但效率较低;当煤层透气性差时,测定成功率极低,实用性差。为此,在已知煤层瓦斯含量基础上,选用直接测定钻孔瓦斯动态抽采流量,按照抽采目标确定抽采率进而确定钻孔不同抽采时间的抽采半径。实践表明,该方法具有较强的实用性。  相似文献   

4.
为了准确测定割缝钻孔的有效抽采半径,基于煤层原始瓦斯含量和压力,通过将预抽率30%与残余瓦斯含量8 m3/t这2个消突指标相结合,提出了新的割缝钻孔有效抽采半径判定指标:当煤层原始瓦斯含量11.3 m3/t时,将压降大于煤层原始瓦斯压力的50%作为确定有效抽采半径的指标;当煤层原始瓦斯含量11.3 m3/t时,将压降64/q2作为确定有效抽采半径的指标。在杨柳煤矿进行了现场试验,最终确定割缝钻孔的有效影响半径为5 m。通过对抽采指标及残余瓦斯含量的考察,验证了上述指标的有效性和可靠性。  相似文献   

5.
目前,我国高瓦斯和突出矿井占全国矿井总数的40%以上,所开采的突出煤层具有瓦斯含量大、瓦斯压力高、裂隙不发育、透气性普遍较低等特点。针对煤层透气性大小直接影响矿井瓦斯抽采效果的问题,贵州某矿为大幅度提高煤体透气性和瓦斯抽采量,在其1321底抽巷进行水力压裂试验。实验表明,1321底抽巷钻孔注水压力为38 MPa,水力压裂钻孔在煤层走向上的影响半径超过25 m范围,水力压裂后钻场钻孔平均瓦斯抽采体积分数提高近31倍,平均瓦斯抽采量提高29倍。通过对取样点的煤体的残余瓦斯含量的测定及线向拟合分析,得出1321底抽巷水力压裂有效半径为41 m。  相似文献   

6.
对于高瓦斯低透气性煤层矿井,其钻孔抽采瓦斯衰减快、瓦斯含量赋存差异大,且不具备穿层钻孔施工条件,采用瓦斯压力测定抽采半径不可靠。通过对钻孔流量法测定抽采半径的过程进行深入研究,分析了影响其考察效果的技术难点,提出了分组平行钻孔布置和计量考察、数据筛选方法,并采用深孔定点取样对瓦斯含量进行准确测定,确定了经济合理的抽采达标指标,实现了顺煤层抽采半径的快速测定。  相似文献   

7.
丁集煤矿是高瓦斯、煤与瓦斯突出矿井,为节省抽放钻孔施工量,在西一采区低抽巷进行了高压水射流扩孔技术应用。通过对2组扩孔和未扩孔抽放钻孔抽放前后的透气性系数、瓦斯压力、瓦斯含量以及抽放量的比较分析,确定高压水射流扩孔技术适用于丁集矿11-2煤层,应用此技术可大幅提高钻孔抽放效率、缩短预抽期、有效降低煤层瓦斯压力、瓦斯含量、增大煤层透气性系数,并至少减少1/2的抽放钻孔施工量。  相似文献   

8.
高杰  李春亭 《煤炭技术》2015,34(2):180-182
为提高低透气性煤层的预抽瓦斯效果,介绍了穿层钻孔煤层段掏穴扩孔卸压增透技术,运用数值模拟方法和现场实践相结合,分析了掏穴钻孔的增透增流机理。研究结果表明:对穿层钻孔煤层段掏穴扩孔后能排出大量煤体,钻孔周围煤体膨胀变形,煤体内地应力降低、裂隙增多、透气性大幅度提高,抽采影响半径可增大34.2%,瓦斯抽采浓度可提高2倍,瓦斯抽采纯流量可增大4-6倍。这一技术卸压增透效果明显,且施工简单,为矿井预抽煤层瓦斯提供了新途径。  相似文献   

9.
针对豫西"三软"煤层水力冲孔增透后瓦斯抽放浓度及流量衰减快的问题,采用水力压裂、水力扩孔综合增透措施,通过瓦斯涌出量、作用半径、抽采量对比,研究了综合水力化措施的应用效果。结果表明,综合水力化措施能有效解决防突、增加煤层透气性及煤层瓦斯涌出量,水力压裂半径达到20.0~25.0m,水力扩孔影响半径达到6m以上;水力扩孔后钻孔抽采浓度较普通钻孔增加4~7倍,流量衰减延长3~5倍。  相似文献   

10.
通过对新庄孜煤矿主采煤层中的B8煤层瓦斯基本参数的测定,考察该煤层瓦斯压力、瓦斯含量与标高之间的相互关系,并确定煤层瓦斯压力、瓦斯含量、透气性系数、钻孔瓦斯流量衰减系数、钻孔瓦斯抽放半径,为瓦斯抽采设计和瓦斯涌出量预测,以及日常的瓦斯和通风管理等提供依据。  相似文献   

11.
针对高瓦斯低透气性煤层,从理论上探讨了煤矿瓦斯抽采水胶药柱在煤层深孔中爆破时,炸药爆炸冲击波初始峰值压力和传播到孔壁处的入射压力以及孔壁煤面上的透射冲击压力。建立了炮孔周围煤体中的动态应力场,分析了爆源区径向裂隙区的形成和扩展半径。最后将裂隙区半径应用于煤层爆破孔和抽采孔布置参数设计,提出了高瓦斯低透气性煤层深孔预裂爆破孔和瓦斯抽采孔的合理间距,并进行工程实践。结果表明该方法为高瓦斯低透气性煤层增透,进而为解决煤层瓦斯抽采提供了一条有效的解决方案。  相似文献   

12.
邓强 《煤矿安全》2021,52(1):98-102
为提高低透气性突出煤层瓦斯治理效果,基于水力压裂的低温、高压、瓦斯解吸快等特性,对低透气性煤层进行水力压裂消突增透试验。试验表明:压裂周围形成裂隙发育区,压裂区域抽采效果提升显著,煤层平均含水率增大1.8倍,单孔抽采浓度提高3.12倍,抽采率提高40%~50%。由于增加裂隙发育以及水驱气的双重作用下,抽采半径由原来的的3 m增加到20 m。水力压裂增透消突技术更加安全、高效。  相似文献   

13.
张志勇  刘东 《中州煤炭》2019,(10):37-40,52
为推进水力冲孔卸压增透技术的推广应用,增加煤层透气性,提高矿井瓦斯抽采效率,在陈四楼煤矿开展水力冲孔卸压增透技术试验,考察该技术的作业工效和增透效果,数据分析结果表明:试验区煤层地质条件下,冲孔水压为8~10 MPa时,每米煤孔冲煤1.4 t所需的时间约为25.3 min,水力冲孔后钻孔两个月内的平均抽采浓度提高了3倍,平均单孔抽采纯量提升了2倍左右,卸压增透效果显著,为矿井瓦斯治理技术水平的提升提供支撑。  相似文献   

14.
在测试某矿井瓦斯压力、瓦斯流量、瓦斯吸附常数、瓦斯渗透率、瓦斯含量系数等基础参数的基础上,采用MATLAB偏微分方程工具箱对该矿井瓦斯抽放钻孔在不同抽放半径、不同抽放负压下的瓦斯流动进行了二维计算,得出了抽放钻孔在不同时间的影响半径、流量与时间的关系及钻孔半径和抽放负压对煤层瓦斯压力分布及抽放流量的影响规律,并与实际进行了比较结果表明,采用MATLAB偏微分方程工具箱能够准确模拟抽放钻孔有效半径,预测瓦斯流量,是现场工程技术人员一种便捷的方法.  相似文献   

15.
对于低透气性煤层瓦斯瓦斯抽采难度加大问题,采用了水力压裂对煤层进行增透,与之同时,水力压裂中注水压力是一个控制压裂效果的关键参数之一。采用数值模拟方研究平煤十二矿己15-31040工作面煤巷条带区域注水压力煤层水力压裂效果的影响。从模拟结果可以看出,随着注水压力的增加,压裂影响半径亦随之增大。当注水压力增大到一定范围,注水压力的增大对压裂增透效果的影响意义不大。将数值模拟结果应用于现场实际工程中,在压裂施工中,未发生压裂事故,而且巷道顶板保持完好。压裂后本煤层瓦斯衰减系数原始区域减小了13.3倍,透气性系数比原始区域增大了21.2倍,而且与之同时,煤层进行水力压裂后,瓦斯抽采浓度和纯量大幅度提升,单孔抽采浓度和纯量为未压裂区域的2.94倍及13.5倍,压裂增透效果明显。  相似文献   

16.
李军伟 《中州煤炭》2020,(7):17-20,26
针对矿井开采垂深下延,煤层透气性低,造成矿井采掘接替紧张现状。以平煤股份十二矿己15-31040进风巷低位瓦斯治理巷为工程背景,对比采取水力压裂增透技术前后,煤层区域瓦斯含量的卸压效果。现场实测,己15、己16-17煤层绝对瓦斯压力分别为0.83~1.30、0.86~1.06 MPa,原始瓦斯含量分别为5.41~12.86、9.63~13.84 m3/t。水力压裂后分别沿压裂孔走向、倾向方向、不同步距点进行卸压效果考察:己15煤层瓦斯含量较原始平均值降低5.41 m3/t左右,己16-17煤层瓦斯含量较原始平均值降低2.91 m3/t左右。研究得出,沿走向方向外段瓦斯含量降幅大于里段,沿倾向方向巷道下帮方向瓦斯含量降幅大于上帮方向。研究分析煤层抽采效果考察等工作,为大垂深、低透气性,高应力矿井煤层增透促抽提供指导。  相似文献   

17.
为了研究瓦斯有效抽采半径影响因素,测定了煤层透气性系数、煤层瓦斯吸附常数、煤的坚固性系数和煤的工业分析等煤层瓦斯基本参数,建立了均质煤层单孔抽采模型,采用COMSOL数值模拟软件,模拟了不同抽采时间下瓦斯压力变化规律、不同孔深和抽采时间下瓦斯压力变化曲线。研究为类似矿井瓦斯有效抽采半径的设计提供理论基础。  相似文献   

18.
马淑胤    ' target='_blank'> 《中州煤炭》2023,(2):285-290,302
为了增加煤层透气性,提高煤层瓦斯抽采效果,以某矿501工作面煤层地质条件为工程背景,采用理论分析、数值模拟、现场试验等方法,对某矿煤层起裂压力、单次压裂时间、压裂流量、影响半径、压裂钻孔抽采效果等参数展开研究。结果表明,模拟压裂孔注水1 h后,煤层压力由压裂孔向周围迅速降低,最终呈现出以压裂孔为圆心的圆形区域的致裂范围,最大压裂半径达到8.315 m;当对压裂泵主动升压至38 MPa时,煤层瞬间破裂,压力回降,流量瞬间增大,且达到压裂泵额定流量值,此时,煤体破裂效果完美;4号压裂孔首次压裂已经接近压穿煤体,进行第二次压裂时,流量曲线增加比较平稳,说明该孔在之前已贯通大部分裂隙,压裂半径可达22 m;对水力压裂孔和普通钻孔进行抽采比较发现,压裂3号钻孔的瓦斯浓度平均达到17.68%效果最为显著,与普通钻孔相比其平均浓度为1号普通钻孔的4.77倍、2号普通钻孔的3.12倍。  相似文献   

19.
张澜涛 《煤炭工程》2020,52(8):88-92
针对深部开采矿井低透煤层瓦斯抽采过程中抽采半径小,抽采效率低的问题,以平顶山矿区首山一矿己15-17-12110抽放巷为试验地点,开展了穿层树状钻孔增透技术的试验研究。试验采用自进式水力喷射树状钻进工艺,在工作面低抽巷共施工了34组穿层树状钻孔,每组7个,共238个钻孔。试验结果表明:与水力冲孔钻孔相对比,穿层树状钻孔在深部低透煤层的瓦斯抽采应用中,抽采影响半径明显增大|平均瓦斯抽采浓度提高了1.30~1.80倍,且高浓度抽采周期延长|单孔平均日抽采纯量为3.47~5.30m3/d,是水力冲孔钻孔的1.58~3.66倍。穿层树状钻孔煤层增透技术在深部矿井工作面穿层条带预抽中,应用效果显著,为平顶山矿区深部低透煤层的瓦斯抽采提供了增透技术储备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号