首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choi H  Choi BS  Kim TW  Jung SJ  Chang M  Lee T  Hwang H 《Nanotechnology》2008,19(30):305704
A self-assembled monolayer of Pt nanoparticles (NPs) was studied as a charge trapping layer for non-volatile memory (NVM) applications. Pt NPs with a narrow size distribution (diameter ~4?nm) were synthesized via an alcohol reduction method. The monolayer of these Pt NPs was immobilized on a SiO(2) substrate using poly(4-vinylpyridine) (P4VP) as a surface modifier. A metal-oxide-semiconductor (MOS) type memory device with Pt NPs exhibits a relatively large memory window of 5.8?V under ± 7?V for program/erase voltage. These results indicate that the self-assembled Pt NPs can be utilized for NVM devices.  相似文献   

2.
Time-resolved microscopic optical second harmonic generation (TRM-SHG) imaging was employed to study a transient charge accumulation in top-contact pentacene field effect transistor (FET) with Ag electrodes. It was demonstrated that the SHG signal at the edge of the Ag electrode decayed but remained in a steady state depending on biasing condition. An electric field formed in pentacene layer below Ag electrode activates the SHG, indicating the insufficient accumulation of injected carriers in the FET channel. By using the TRM-SHG technique transient change of the carrier density in the OFET is obtained.  相似文献   

3.
An approach to fabricating transparent electronic devices by using nanomaterial and nanofabrication is presented in this paper. A see-through capacitor is constructed from self-assembled silica nanoparticle layers that are stacked on the transparent substrate. The electrodes are made of indium tin oxide. Unlike the traditional processes used to fabricate such devices, the self-assembly approach enables one to synthesize the thin film layers at lower temperature and cost, and with a broader availability of nanomaterials. The vertical dimension of the self-assembled thin films can be precisely controlled, as well as the molecular order in the thin film layers. The shape of the capacitor is generated by planar micropatterning. The monitoring by quartz crystal demonstrates the steady growth of the silica nanoparticle multilayer. In addition, because the material synthesis and the device fabrication steps are separate, the fabrication is not affected by the harsh conditions required for the material synthesis. As a result, a clear pattern is allowed over a large area on the substrate. The prepared capacitive structure has an optical transparency higher than 92% over the visible spectrum. The capacitive impedance is measured at different frequencies and fit the theoretical results. As one of the fundamental components, this type of capacitive structure can serve in the transparent circuits, interactive media and sensors, as well as being applicable to other transparent devices.  相似文献   

4.
Measurements of the behaviour of various high-resolution silicon strip detectors with capacitive charge division have been made in a high-energy particle beam. The results are compared with an electrostatic model which calculates the charges deposited on the strips after the passage of a minimum ionizing particle. Good agreement is found and the model is used to propose a method of improving the charge-division properties of such detectors.  相似文献   

5.
We present results on spectrally resolved photo-resistance studies of optically-induced charge storage effects in self-organized InAs quantum dots (QDs). The stored charge can be detected and erased electrically. The investigated structure designed for electron or hole storage in the QDs consists of a modulation doped two-dimensional channel which was grown on top of a layer of InAs QDs, separated by an asymmetric tunnel barrier. Our results show that optical QD charging with spectral resolution provides information on the charging dynamics and on the quantity and spectral dependence of stored charges in the QDs. This is a novel technique by which QD excitation spectra can be studied. Spectrally resolved storage effect measurements on electrons as well as on holes allowed to investigate thermal redistribution of carriers in the quantum dot layer. It was found that only at low temperatures carriers can be stored selectively over long time scales in the InAs QDs. The charge storage effect is observable for several hours at temperatures up to 170 K, for several seconds up to 250 K due to an increase in thermal emission of stored charges.  相似文献   

6.
Self-assembled monolayers (SAMs) of 21-(16-mercaptohexadecan-1-oyl)-4,7,13,16-tetraoxa-1,10,21-triazabicyclo[8.8.5]tricosane-19,23-dione were prepared on gold. Characterization of the SAMs was carried out by sessile drop contact angle, ellipsometry, grazing angle FT-IR spectroscopy, and electrochemical techniques. The cation recognition properties of the SAM were studied by cyclic voltammetry and impedance spectroscopy. The films show moderate selectivity for detection of Li+ ions in solution over K+ and Na+, with selectivity values calculated to be log K(Li+,Na+) approximately -1.30 and log K(Li+,K+) approximately -0.92. To the best of our knowledge, this is the first demonstration of a lithium sensor fabricated using self-assembled monolayer technology.  相似文献   

7.
We report a study of a full-coverage octadecylphosphonic acid (OPA or ODPA) self-assembled monolayer (SAM) spin-coated on the native oxide layer (SiO2) of a single crystalline silicon (c-Si) wafer using spectroscopic ellipsometry (SE) and reflectometry (SR). The OPA SAM showed characteristics of being a dielectric film in visible range and becoming absorbing in deep-UV range. By assuming an optical stack model of OPA/SiO2/c-Si for the OPA monolayer system and adopting the parameterized Tauc-Lorentz dispersion model, we obtained an excellent fit of the model to the SE and SR data, from which dispersion of optical functions as well as thickness of the OPA film were deduced. The OPA film thickness measured by atomic force microscopy (AFM) on partial coverage OPA samples was used as the initial trial film thickness in the fitting processes. The deduced OPA film thickness from SE and SR data fitting was in good agreement with that obtained by AFM.  相似文献   

8.
9.
The development of surface-enhanced Raman scattering (SERS)-active substrates for cancer gene detection is described. The detection method uses Raman active dye-labeled DNA gene probes, self-assembled monolayers, and nanostructured metallic substrates as SERS-active platforms. The mercaptohexane-labeled single-stranded DNA (SH-(CH(2))(6)-ssDNA)/6-mercapto-1-hexanol system formed on a silver surface is characterized by atomic force microscopy. The surface-enhanced Raman gene (SERGen) probes developed in this study can be used to detect DNA targets via hybridization to complementary DNA probes. The probes do not require the use of radioactive labels and have a great potential to provide both sensitivity and selectivity. The effectiveness of this approach and its application in cancer gene diagnostics (BRCA1 breast cancer gene) are investigated.  相似文献   

10.
11.
A general mass spectrometry technique for the characterization of alkanethiol-modified surfaces is presented. Alkanethiol self-assembled onto a gold surface (in this case, peptides were attached to the gold surface via a thiolate bond) was reductively desorbed in 0.05 M KOH in the presence of octadecyl-derivatized silica gel. The peptide adsorbed onto the silica gel, whereupon it could be filtered, washed to remove any salts, and then eluted using a mixture of 4:1 v/v methanol/water. The eluant containing the peptide was injected into a Fourier transform ion-cyclotron resonance mass spectrometer (FTICR/MS) via electrospray ionization. The spectrum showed no fragmentation of the peptide, demonstrating the gentleness of the technique. This simple procedure is not limited to FTICR/MS and could be adapted to other mass spectrometers.  相似文献   

12.
Analytical gold electrodes were polished mechanically and electrochemically and the true area of the electrode surface was measured by quantitative oxidative/reductive cycling of the electrode. A roughness factor for each electrode was determined from the ratio of the true area to the geometric area. The roughness is fully described by a combination of microscopic roughness (up to tens of nanometers) and macroscopic roughness (on the order of hundreds of nanometers) terms. The electrodes were then derivatized with a self-assembled monolayer (SAM) of dodecanethiol or a thioalkane azacrown and characterized by impedance spectroscopy. The behavior of the electrodes was modeled with either a Helmholtz or Randles equivalent circuit (depending on the SAM used) in which the capacitance was replaced with a constant phase element. From the model, an effective capacitance and an alpha factor that quantifies the nonideality of the SAM capacitance was obtained. The effective capacitance divided by the roughness factor yields the capacitance per unit true area, which is only a function of microscopic roughness. The relationship between this capacitance and the alpha factor indicates that microscopic roughness predominantly affects the nonideality of the film while macroscopic roughness predominantly affects the magnitude of the film's capacitance. Understanding the contribution of the electrode topography to the magnitude and ideality of the SAM capacitance is important in the construction of SAM-based capacitive sensors because it predicts the importance of electrode-electrode variations.  相似文献   

13.
The segregation ability of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic surfactant, on cytochrome c (cyt c) aggregates in a phosphate buffer solution was quantified through the dynamic light-scattering analysis, and CHAPS was found to have an excellent ability in reducing nonspecific affinity among cyt c molecules. When CHAPS was applied to cyt c aggregates on the surface of gold substrates modified with self-assembled cyt c monolayer, the aggregates were found to be successfully eliminated by high-resolution atomic force microscopy image with 30-nm-sized cyt c clusters. This technique is expected to be useful to prepare a self-assembled monolayer of metalloproteins without their aggregates which may degrade the electrochemical property required as a biomolecular electronic device.  相似文献   

14.
Complexation of phthalic acid esters (PAEs) by a self-assembled monolayer (SAM) of thiolated alpha-cyclodextrin (6-(2-mercaptoethylamino)-6-deoxy-alpha-cyclodextrin, MEA-alpha-CD) on a gold electrode was examined by a cyclic voltammetry using hydroquinone (HQ) as a probe. From the inhibitory effect of the phthalate esters on the inclusion of HQ by the surface-confined cyclodextrin (CD), the association constants (Kasn) of the esters with the immobilized CD were estimated. For comparison, the association of PAEs with free alpha-CD was examined spectrophotometrically using methyl orange as a probe. It was concluded that, in both free and surface-confined CD systems, the Kasn value increased with an increase in the length of aliphatic alcohols conjugated to phthalic acid. Furthermore, the Kasn values for PAEs in the SAM system were much larger than those in a free CD system. This could be intuitively ascribed to the steric factor for the PAEs to come out from the cavity of surface-confined CD, whose rim was in contact with the PAEs. Thermodynamic parameters indicated that the inclusion of PAEs in the SAM system was entropy-driven, which is different from the free CD system where the inclusion was favored by both enthalpy and entropy. This is partly due to the difficulties in cancellation of strain energy by the inclusion into the cavity of the densely fixed CD (97% of the calculated maximum) and partly due to the reduction of hydrogen bonding between the PAEs and the surface-confined CD. Desolvation of the PAEs and CD by the friction at the penetration into the cavity of CD, which was rigidly fixed to the electrode, might also contribute to the positive entropy change. These factors might emphasize the apolar factor of binding to be characterized by a favorable entropy change in the immobilized CD system.  相似文献   

15.
Ruan C  Yang F  Lei C  Deng J 《Analytical chemistry》1998,70(9):1721-1725
A new approach to construct a reagentless enzyme biosensor is described. Based on multilayer horseradish peroxidase in a self-assembled monolayer configuration, the biosensor was constructed using multilayer thionine covalently tethered to the enzyme as an electron-transfer mediator. The multilayer enzyme and the multilayer mediator were stepwisely synthesized onto an l-cysteine-assembled gold electrode using glutaraldehyde as a bifunctional reagent. The multilayer mediator tethered to the multilayer enzyme could effectively and stably shuttle electrons between the electrode and the multilayer enzyme linked onto the monolayer. The sensitivity of the resulting enzyme biosensor with eight layers of enzyme and three layers of mediator was more than 250 μA cm(-)(2) for 1.0 × 10(-)(4) mol/L hydrogen peroxide under optimal conditions, whereas such a modified electrode with one layer of enzyme and one layer of mediator did not yield a detectable response to 1.0 × 10(-)(4) mol/L hydrogen peroxide.  相似文献   

16.
We report on p- and n-type organic self-assembled monolayer field effect transistors. On the base of quaterthiophene and fullerene units, multifunctional molecules were synthesized, which have the ability to self-assemble and provide multifunctional monolayers. The self-assembly approach, based on phosphonic acids, is very robust and allows the fabrication of functional devices even on larger areas. The p- and n-type transistor devices with only one molecular active layer were demonstrated for transistor channel lengths up to 10 μm. The monolayer composition is proven by electrical experiments and by high-resolution transmission electron microscopy, electron energy loss spectroscopy, XPS, and AFM experiments. Because of the molecular design and the contribution of isolating alkyl chains to the hybrid dielectric, our devices operate at low supply voltages (-4 V to +4 V), which is a key requirement for practical use and simplifies the integration in standard applications. The monolayer devices operate in ambient air and show hole and electron mobilities of 10(-5) cm(2)/(V s) and 10(-4) cm(2)/(V s) respectively. In particular the n-type operation of self-assembled monolayer transistors has not been reported before. Hereby, structure-property relations of the SAMs have been studied. Furthermore an approach to protect the sensitive C(60) from immediate degradation within the molecular design is provided.  相似文献   

17.
A high-resolution time-of-flight secondary ionization mass spectrometer (TOF-SIMS) has been used to investigate chain length effects in hydrocarbon seff-assembled monolayer (SAM) surfaces on gold substrates. A wide range of n-alkanethiols was used to make homogeneous SAM surfaces, which included both odd and even hydrocarbon chain length thiols. Variations in coverage, extent of oxidation, and high-mass cluster formation as a function of hydrocarbon chain length of the alkanethiol SAM surfaces were investigated. Long-short chain length effects were observed for the relative coverage of the SAM surfaces, which directly influences the extent of oxidation for the thin films. The formation of gold-sulfur and gold-adsorbate cluster ions was also observed, since the mass range of the TOF-SIMS made it possible to monitor all of the cluster ions that were formed following the high-energy ion/surface interactions.  相似文献   

18.
研究了具有不同主链分子量和侧链长度的N,N-双烷基化壳聚糖单分子膜的性质.结果表明,主链分子量越大,所形成的N,N-双烷基壳聚糖单分子膜的结构越紧密.在主链分子量相同的条件下,N,N-双烷基壳聚糖单分子膜的致密度随着侧链长度的增大而增大,表明N,N-双烷基化壳聚糖分子间的缠结嵌套和疏水相互作用力的增大.比较N,N-双烷基化壳聚糖单分子膜与相应自组装囊泡的性质发现,囊泡的药物平衡释放率随着其相应材料单分子膜压缩模量的增大而减小,呈现出一定的线性关系.单分子膜压缩模量的大小反映囊泡膜结构的紧密程度.  相似文献   

19.
Polyaniline (PANI) films with pyramidal shaped crystallites were prepared by self-organization on self-assembled monolayer (SAM) modified Si substrates. High-resolution atomic force microscopy (HR-AFM) shows that SAM has tridymite structural order and the PANI film has biphasic conformational morphology corresponding to face-on orientation and edge-on orientation. Order parameters obtained from power spectral density analysis of HR-AFM images of SAM and PANI films show that the pyramidal crystallites are in emeraldine salt (ES-I) form and the region between the crystallites is in emeraldine base (EB-II) form. The ordered lattice of PANI crystallites as observed by cross-sectional HR-TEM confirms its single crystalline nature as well as epitaxial growth. The heteroepitaxial growth of PANI is attributed to the structural order of interfacial SAM on Si.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号