Electroluminescence (EL) measurements are carried out on a two-terminal carbon nanotube (CNT) based light-emitting diode (LED). This two-terminal device is composed of an asymmetrically contacted semiconducting single-walled carbon nanotube (SWCNT). On the one end the SWCNT is contacted with Sc and on the other end with Pd. At large forward bias, with the Sc contact being grounded, electrons can be injected barrier-free into the conduction band of the SWCNT from the Sc contact and holes be injected into the valence band from the Pd electrode. The injected electrons and holes recombine radiatively in the SWCNT channel yielding a narrowly peaked emission peak with a full width at half-maximum of about 30 meV. Detailed EL spectroscopy measurements show that the emission is excitons dominated process, showing little overlap with that associated with the continuum states. The performance of the LED is compared with that based on a three-terminal field-effect transistor (FET) that is fabricated on the same SWCNT. The conversion efficiency of the two-terminal diode is shown to be more than three times higher than that of the FET based device, and the emission peak of the LED is much narrower and operation voltage is lower. 相似文献
Oxygen-plasma treatment of indium-tin oxide (ITO) anodes is now widely used as one of the most effective ways to improve the device performance of organic light-emitting diodes (LEDs). However, the role of oxygen-plasma treatment has not been clearly understood. We have performed detailed studies of the surface and bulk of the ITO thin films exposed to oxygen-plasma. We employed a multitude of experimental techniques, including X-ray and ultraviolet photoelectron spectroscopies, atomic force microscopy, dynamic contact angle measurement, four-point probe and Hall measurements to investigate the changes induced by the plasma. We have also analyzed the device characteristics of polymer LEDs fabricated with these anodes. We found significant modifications of the physico-chemical, morphological, transport and optical properties of the oxygen-plasma treated ITO. Although oxygen-plasma does not show any measurable etching effect, it induces considerable changes leading to an increase in work function, electron carrier concentration and conductivity. It also increases the surface energy and polarity. We relate these modifications to enhancement of the device performance, such as electroluminescence efficiency and lifetime, through their effects on hole injection, and interface structure and stability. Finally, we show that even in the presence of a hole-transport layer such as a poly(styrene sulphonate)-doped poly(3,4-ethylene dioxythiophene) (PEDOT:PSS) inserted between the anode and the emissive polymer layer, oxygen-plasma treatment of the ITO anodes is still beneficial for the devices. 相似文献
We have carried out comparative studies on transparent conductive thin films made with two kinds of commercial carbon nanotubes: HiPCO and arc-discharge nanotubes. These films have been further exploited as hole-injection electrodes for organic light-emitting diodes (OLEDs) on both rigid glass and flexible substrates. Our experiments reveal that films based on arc-discharge nanotubes are overwhelmingly better than HiPCO-nanotube-based films in all of the critical aspects, including surface roughness, sheet resistance, and transparency. Further improvement in arc-discharge nanotube films has been achieved by using PEDOT passivation for better surface smoothness and using SOCl2 doping for lower sheet resistance. The optimized films show a typical sheet resistance of approximately 160 Omega/ square at 87% transparency and have been used successfully to make OLEDs with high stabilities and long lifetimes. 相似文献
We use e-beam lithography to pattern an indium tin oxide (ITO) electrode to create arrays of conjugated-polymer LEDs, each of which has a hole-injecting contact limited to 100 nm in diameter. Using optical microscopy, we estimate that the electroluminescence from a 100 nm diameter LED comes from a region characterized by a diameter of approximately 170 nm. This apparent broadening occurs due to current spreading within a PEDOT:PSS layer which was included to aid hole injection. 相似文献
The band gap of a semiconductor is one of its most fundamental properties. It is one of the defining parameters for applications, including nanoelectronic and nanophotonic devices. Measuring the band gap, however, has received little attention for quasi-one-dimensional materials, including single-walled carbon nanotubes. Here we show that the current-voltage characteristics of p-n diodes fabricated with semiconducting carbon nanotubes can be used along with the excitonic transitions of the nanotubes to measure both the fundamental (intrinsic) and renormalized nanotube band-gaps. 相似文献
The demonstration of colour tunability and high efficiency has brought organic light-emitting diodes (OLEDs) into the displays and lighting market. However, high production costs due to expensive deposition techniques and the use of reactive materials still limit their market entry, highlighting the need for novel concepts. This has driven the research towards the integration of both organic and inorganic materials into devices that benefit from their respective peculiar properties. The most representative example of this tendency is the application of metal oxides in organic optoelectronics. Metal oxides combine properties such as high transparency, good electrical conductivities, tuneable morphology, and the possibility of deposition on large areas with low-cost techniques. The use of metal oxides as charge injection interfaces in OLEDs has also been investigated. Hybrid organic-inorganic light-emitting diodes (HyLEDs) are inverted OLEDs that employ air-stable metal oxides as the charge injection contacts. They are emerging as a potential competitor to standard OLEDs, thanks to their intrinsic air stable electrodes and solution processability, which could result in low-cost, large area, light-emitting devices. This article reviews the short history of this class of devices from its first solid state example published in 2006 to the present achievements. The data presented shed light on the electronic mechanism behind the functioning of HyLEDs and give guidelines for their further optimization. 相似文献
White organic light-emitting diodes (WOLEDs) offer a range of attractive characteristics and are in several regards conceptually different from most currently used light sources. From an application perspective, their advantages include a high power efficiency that rivals the performance of fluorescent lamps and inorganic LEDs and the potential for a very low cost of manufacturing. As flat-panel light sources they are intrinsically glare-free and generate light over a large area. WOLEDs are constantly improving in terms of performance, durability, and manufacturability, but these improvements require joint research efforts in chemistry and the materials sciences to design better materials as well as in physics and engineering to invent new device concepts and design suitable fabrication schemes, a process that has generated many exciting scientific questions and answers. This article reviews current developments in the field of WOLEDs and puts a special focus on new device concepts and on approaches to reliable and cost-efficient WOLED manufacturing. 相似文献
This study reports the fabrication and characterization of nanoscale organic light-emitting diodes (nano-OLEDs) based on poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV). The nano-OLEDs were fabricated by spin casting MEH-PPV into cylindrical nanoholes lithographically patterned into silicon nitride. The electroluminescence (EL) spectrum of MEH-PPV was similar to its photoluminescence spectrum, confirming radiative decay from the same excited state. Device characteristics in the form of current density and EL versus applied electric field are presented and compared with those of a large-scale OLED. 相似文献
Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components, such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics. 相似文献
Modifications of indium-tin-oxide (ITO) and copper phthalocyanine (CuPc) layers by heat treatment aimed at lowering driving voltage in organic light-emitting diodes (OLEDs) are examined. Significant changes were observed in the surface morphology and carrier injection properties of ITO and CuPc layers after annealing at T = 250 °C for 0-60 min in a glove box. In the case of ITO annealing, although the ITO work function gradually decreased and the surface of the ITO layer became smoother than that of an unannealed ITO layer, we observed an appreciable decrease in the driving voltage with an increase in annealing time. In the case of CuPc annealing, on the other hand, we observed deterioration of the OLED's characteristics. All devices demonstrated an increase in driving voltage due to the pronounced crystallization of the CuPc layer. 相似文献
Random networks of single-walled carbon nanotubes (SWCNTs) were have been grown by chemical vapor deposition on silicon wafers
and used for fabricating field-effect transistors (FETs) using symmetric Pd contacts and diodes using asymmetrical Pd and
Sc contacts. For a short channel FET or diode with a channel length of about 1 μm or less, the device works in the direct
transport regime, while for a longer channel device the transport mechanism changes to percolation. Detailed electronic and
photovoltaic (PV) characterizations of these carbon nanotube (CNT) thin-film devices was carried out. While as-fabricated
FETs exhibited typical p-type transfer characteristics, with a large current ON/OFF ratio of more than 104 when metallic CNTs were removed via a controlled breakdown, it was found that the threshold voltage for the devices was typically
very large, of the order of about 10 V. This situation was greatly improved when the device was coated with a passivation
layer of 12 nm HfO2, which effectively moved the threshold voltages of both FET and diode back to center around zero or turned these device to
their OFF states when no bias was applied on the gate. PV measurements were then made on the short channel diodes under infrared
laser illumination. It was shown that under an illumination power density of 1.5 kW/cm2, the device resulted in an open circuit voltage VOC = 0.21 V and a short circuit current ISC = 3.74 nA. Furthermore, we compared PV characteristics of CNT film diodes with different channel lengths, and found that
the power transform efficiency decreased significantly when the device changed from the direct transport to the percolation
regime. 相似文献
The electrical and the optical properties of organic light-emitting diodes (OLEDs) fabricated utilizing nickel-oxide (NiO) buffer layers between the anodes and the hole transport layers were investigated. The NiO layer was formed by using a thermally evaporated nickel thin film and a subsequent oxidation process. The tunneling holes in the OLED were increased due to the existence of the NiO layer between the anode and the hole transport layer, resulting in enhanced efficiency for the OLED. These results indicate that OLEDs with NiO buffer layers hold promise for potential applications in highly-efficient flat-panel displays. 相似文献
We report the brightness characteristics of KPT-1608PBC (SMD) blue light emitting diodes and the key features of emission
propagation through the SMD case. The luminosity pattern of the diode is presented. The external quantum yield is determined
as a function of the current through the diode, and the quantum yield is shown to correlate with the mechanism responsible
for the recombination current.
Original Russian Text ? N.S. Grushko, A.V. Lakalin, A.P. Solonin, 2008, published in Neorganicheskie Materialy, 2008, Vol.
44, No. 2, pp. 181–183. 相似文献
We used a side-chain polymer based on a high-electron affinity (EA) naphthalimide moiety (PNI), to fabricate single and double-layer light-emitting diodes (LEDs) with improved efficiency in the green spectral region. The chromophore is attached to a polymethacrylate backbone through a spacer and is characterised by a 30% photoluminescence quantum yield. In single-layer light-emitting diodes we find that the electroluminescence efficiency is not limited by A1 cathodes as for poly(p-phenylene vinylene), PPV, as expected from consideration of the EA. We also report maximum internal quantum efficiencies of about 1.7% for Ca and 0.9% for Al in double-layer devices where PPV serves as both hole-injector and emitter. Tuning of emission in the red is possible by dye-doping (at high concentration) the PNI and causing the emission to happen in this layer. Unexpectedly, not only does the dye-doping of PNI red-shifts the emission spectrum, but also affects significantly the charge transport properties and in particular reduces the driving field necessary for electroluminescence in both single- and double-layer LEDs and we propose this effect as one of the factors for the lifetime increase upon doping recently reported in the literature. 相似文献
It is demonstrated that the lifetime of organic thin-film electroluminescent light-emitting diodes can be increased many times
by the deposition of protective coatings during the fabrication cycle.
Pis’ma Zh. Tekh. Fiz. 23, 88–90 (March 12, 1997) 相似文献
Multicolor emissive carbon dots (M-CDs) have tremendous potential applications in manifold fields of bioimaging, biomedicine and light-emitting devices. Until now, it is still difficult to produce fluorescence tunable CDs with high quantum yield across the entire visible spectra. In this work, a type of M-CDs with concentration-tunable fluorescence and solvent-affected aggregation states was synthesized by solvothermal treatment of citric acid (CA) and 1-(2-pyridylazo)-2-naphthol (PAN) and the formation mechanism was monitored by different reaction time and raw material ratio. The fluorescence spectra of M-CDs in organic solvents can range from 350 to 750 nm by adjusting the concentration. M-CDs possess different aggregation states in water and organic solvents, accompanied by different fluorescence emission, which is attributed to the different surface states of various component CDs in M-CDs. Moreover, the obtained products can be uniformly dispersed into polymethylmethacrylate (PMMA) solutions as well as epoxy resins to fabricate transparent CDs/PMMA films and CDs/epoxy composites, which can effectively prevent the aggregation and produce multicolor and white light-emitting diodes (WLED). In addition, the prepared WLED with Commission Internationale de L’Eclairage (CIE) of (0.29, 0.31) by using M-CDs/epoxy resin as packages, demonstrating the M-CDs exhibit potential applications for light-emitting devices.