首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Biosorption equilibrium, kinetics and thermodynamics of chromium(VI) ions onto cone biomass were studied in a batch system with respect to temperature and initial metal ion concentration. The biosorption efficiency of chromium ions to the cone biomass decreased as the initial concentration of metal ions was increased. But cone biomass of Pinus sylvestris Linn. exhibited the highest Cr(VI) uptake capacity at 45 degrees C. The biosorption efficiency increased from 67% to 84% with an increase in temperature from 25 to 45 degrees C at an initial Cr(VI) concentration of 300 mg/L. The Langmuir isotherm model was applied to experimental equilibrium data of Cr(VI) biosorption depending on temperature. According to Langmuir isotherm, the monolayer saturation capacity (Q(max)) is 238.10 mg/g. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data for initial Cr(VI). The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order kinetic model. The activation energy of biosorption (E(a)) was determined as 41.74 kJ/mol using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of biosorption (DeltaG(0), DeltaH(0) and DeltaS(0)) were also evaluated.  相似文献   

2.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the green alga (Ulva lactuca) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by U. lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of U. lactuca biomass for Pb(II) and Cd(II) ions was found to be 34.7mg/g and 29.2mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 10.4kJ/mol for Pb(II) biosorption and 9.6kJ/mol for Cd(II) biosorption, indicating that the biosorption of both metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Pb(II) and Cd(II) ions onto U. lactuca biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

3.
In this paper, pineapple stem (PS) waste, an agricultural waste available in large quantity in Malaysia, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Batch mode experiments were conducted at 30 degrees C to study the effects of initial concentration of methylene blue, contact time and pH on dye adsorption. Equilibrium adsorption isotherms and kinetic were investigated. The experimental data were analyzed by the Langmuir and Freundlich models and the isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 119.05mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order and pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model. The PS was found to be very effective adsorbent for MB adsorption.  相似文献   

4.
The biosorption of a cationic dye, malachite green oxalate (MG) from aqueous solution onto an invasive marine alga Caulerpa racemosa var. cylindracea (CRC) was investigated at different temperatures (298, 308 and 318 K). The dye adsorption onto CRC was confirmed by FTIR analysis. Equilibrium data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (DR) equations. All of the isotherm parameters were calculated. The Freundlich model gave a better conformity than Langmuir equation. The mean free energy values (E) from DR isotherm were also estimated. In order to clarify the sorption kinetic, the fit of pseudo-first-order kinetic model, second-order kinetic model and intraparticle diffusion model were investigated. It was obtained that the biosorption process followed the pseudo-second-order rate kinetics. From thermodynamic studies the free energy changes were found to be -7.078, -9.848 and -10.864 kJ mol(-1) for 298, 308 and 318 K, respectively. This implied the spontaneous nature of biosorption and the type of adsorption as physisorption. Activation energy value for MG sorption (E(a)) was found to be 37.14 kJ mol(-1). It could be also derived that this result supported physisorption as a type of adsorption.  相似文献   

5.
The biosorption of Cu(II) from aqueous solutions by valonia tannin resin was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, the Elovich and the intraparticle diffusion model equation - to determine the best fit equation for the biosorption of copper ions onto valonia tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well.  相似文献   

6.
Adsorption of copper ions onto Capsicum annuum (red pepper) seeds was investigated with the variation in the parameters of pH, contact time, adsorbent and copper(II) concentrations and temperature. The nature of the possible adsorbent and metal ion interactions was examined by the FTIR technique. The copper(II) adsorption equilibrium was attained within 60 min. Adsorption of copper(II) ions onto C. annuum seeds followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Maximum adsorption capacity (q(max)) of copper(II) ions onto red pepper seeds was 4.47x10(-4) molg(-1) at 50 degrees C. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of copper(II) ions onto C. annuum seeds could be described by the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 60 min, but diffusion is not only the rate controlling step. Thermodynamics parameters such as the change of free energy, enthalpy and entropy were also evaluated for the adsorption of copper(II) ions onto C. annuum seeds.  相似文献   

7.
The adsorption of Copper(II) onto Amberjet 1500H and Ambersep 252H synthetic ion exchange resins have been studied. All the studies were conducted by a batch method to determine equilibrium and kinetic studies at the solution pH of 5.8 in the concentration ranges from 10 to 20mg/L. The experimental isotherm data were analyzed using the Freundlich, Langmuir, Redlich Perterson, Temkin, Dubinin-Radushkevich equations. Correlation co-efficient was determined for each isotherm analysis. Error functions have been used to determine the alternative single component parameters by non-linear regression due to the bias in using the correlation coefficient resulting from linearisation. From the error analysis the EABS error function provides the best parameters for the isotherm equation in this system. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The initial sorption rate, pseudo-first-order, pseudo-second-order and intraparticle diffusion rate constants for different initial concentrations were evaluated and discussed.  相似文献   

8.
The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl(2)) and hydrochloric acid (HCl). Batch shaking adsorption experiments were performed in order to examine the effects of pH, contact time, biomass concentration, biomass treatment and initial metal concentration on the removal process. The optimum sorption conditions for each heavy metal are presented. One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical significance of biosorption capacities after five cycles of sorption and desorption. The equilibrium experimental data were tested using the most common isotherms. The results are best fitted by the Freundlich model among two-parameter models and the Toth, Khan and Radke-Prausnitz models among three-parameter isotherm models for Cd (II), Ni (II) and Pb (II), respectively. The kinetic data were fitted by models including pseudo-first-order and pseudo-second-order. From the results obtained, the pseudo-second-order kinetic model best describes the biosorption of cadmium, nickel and lead ions.  相似文献   

9.
The biosorption properties of copper(II) and zinc(II) onto a cone biomass of Pinus sylvestris L. was investigated by using batch techniques. The biosorption studies carried out with single metal solutions. The removal of copper(II) and zinc(II) from aqueous solution increased with pH and sharply decreased when pH of the solution was decreased. The maximum biosorption efficiency of P. sylvestris was 67% and 30% for Cu(II) and Zn(II), respectively. Batch kinetic and isotherm of biosorption metal ions were investigated. The second-order kinetic model was used to correlate the experimental data. The Freundlich and Langmuir model can describe the adsorption equilibrium of metal(II) on cone biomass. The biosorption constants were found from the Freundlich and Langmuir isotherms at 25 degrees C. It is found that the biosorption data of metals on cone biomass fitted both the Freundlich and Langmuir adsorption models.  相似文献   

10.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the macrofungus (Amanita rubescens) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by A. rubescens biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum biosorption capacity of A. rubescens for Pb(II) and Cd(II) was found to be 38.4 and 27.3mg/g, respectively, at optimum conditions of pH 5.0, contact time of 30min, biomass dosage of 4 g/L, and temperature of 20 degrees C. The metal ions were desorbed from A. rubescens using both 1M HCl and 1M HNO(3). The recovery for both metal ions was found to be higher than 90%. The high stability of A. rubescens permitted ten times of adsorption-elution process along the studies without a decrease about 10% in recovery of both metal ions. The mean free energy values evaluated from the D-R model indicated that the biosorption of Pb(II) and Cd(II) onto A. rubescens biomass was taken place by chemical ion-exchange. The calculated thermodynamic parameters, DeltaG degrees , DeltaH degrees and DeltaS degrees showed that the biosorption of Pb(II) and Cd(II) ions onto A. rubescens biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both Pb(II) and Cd(II) followed well pseudo-second-order kinetics. Based on all results, It can be also concluded that it can be evaluated as an alternative biosorbent to treatment wastewater containing Pb(II) and Cd(II) ions, since A. rubescens is low-cost biomass and has a considerable high biosorption capacity.  相似文献   

11.
Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 degrees C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (DeltaH degrees), standard entropy (DeltaS degrees) and standard free energy (DeltaG degrees) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.  相似文献   

12.
Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel   总被引:1,自引:1,他引:0  
The biosorption of Cu(II) from aqueous solutions by mimosa tannin resin (MTR) was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmiur isotherm. The experimental data were analysed using four sorption kinetic models -- the pseudo-first- and second-order equations, and the Elovich and the intraparticle diffusion equation -- to determine the best fit equation for the biosorption of copper ions onto mimosa tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well. Thermodynamic parameters such as the entropy change, enthalpy change and Gibb's free energy change were found out to be 153.0 J mol(-1)K(-1), 42.09 kJ mol(-1) and -2.47 kJ mol(-1), respectively.  相似文献   

13.
The adsorption of two basic dyes, namely, Malachite Green and Methylene Blue onto both agricultural by-products (i.e. rice bran and wheat bran) has been investigated in this study. The adsorption of both basic dyes was solution pH-dependent. The kinetic experimental data were analyzed using four kinetic equations including pseudo-first-order equation, pseudo-second-order equation, external diffusion model and intraparticle diffusion model to examine the mechanism of adsorption and potential rate-controlling step. The best-fit equation was identified using normalized standard deviation. The Langmuir and Freundich isotherms were used to fit the equilibrium data and the results showed that the Langmuir isotherm exhibited a little better fit to the Methylene Blue adsorption data by both adsorbents while the Freundlich isotherm seemed to agree better with the Malachite Green adsorption. The Gibbs free energy changes at 20 degrees C were calculated and the obtained values supported the conclusion that two dyes molecules adsorbed by physical processes. The effects of particle size, adsorbent concentration and solution ionic strength on the adsorption of the two basic dyes were also studied.  相似文献   

14.
In this paper, the ability of coconut bunch waste (CBW), an agricultural waste available in large quantity in Malaysia, to remove basic dye (methylene blue) from aqueous solution by adsorption was studied. Batch mode experiments were conducted at 30 degrees C to study the effects of pH and initial concentration of methylene blue (MB). Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 70.92 mg/g at 30 degrees C. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model.  相似文献   

15.
In this study, the effect of temperature, pH and initial metal concentration on Pb(II) biosorption on modified quebracho tannin resin (QTR) was investigated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to investigate QTR structure and morphology. Besides, the specific BET surface area and zeta-potential of the QTR were analysed. Thermodynamic functions, the change of free energy (DeltaG degrees), enthalpy (DeltaH degrees) and entropy (DeltaS degrees) of Pb adsorption on modified tannin resin were calculated as -5.43 kJ mol(-1) (at 296+/-2K), 31.84 kJ mol(-1) and 0.127 J mmol(-1) K(-1), respectively, indicating the spontaneous, endothermic and the increased randomness nature of Pb(2+) adsorption. The kinetic data was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model. The results suggested that the pseudo-second-order model (R(2)>0.999) was the best choice among all the kinetic models to describe the adsorption behavior of Pb(II) onto QTR. Langmuir, Freundlich and Tempkin adsorption models were used to represent the equilibrium data. The best interpretation for the experimental data was given by the Langmuir isotherm and the maximum adsorption capacity (86.207 mg g(-1)) of Pb(II) was obtained at pH 5 and 296 K.  相似文献   

16.
ABSTRACT

The removal of Basic Yellow 2 (BY2), a cationic dye, from aqueous solution by using montmorillonite as adsorbent was studied in batch experiments. The effect of pH, agitation speed, adsorbent dosage, initial dye concentration ionic strength, and temperature on the removal of BY2 was also investigated. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms were applied to fit the adsorption data of BY2 dye. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The maximum monolayer adsorption capacity was calculated as 434.196 mg g?1 from the Langmuir isotherm model. The adsorption data was fitted to both the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle kinetic models, and the calculated values of the amount adsorbed at equilibrium (qe) by pseudo-second-order equations were found to be in good agreement with the experimental values. The thermodynamic factors were also evaluated. The entropy change (ΔS*) was negative, suggesting that the adsorption process decreases in entropy and enthalpy change (ΔH*) was positive which indicates endothermic nature. The positive ΔG* value confirms the un-spontaneity of the process. In addition, a semiempirical model was calculated from kinetic data.  相似文献   

17.
The magnetic-chitosan particle was prepared and characterized by the SEM, XRD, FT-IR and employed as an adsorbent for removal fluoride from the water solution in the batch system. The Langmuir isotherms, Bradley's isotherm, Freundlich isotherm and Dubinin-Kaganer-Radushkevich (DKR) isotherm were used to describe adsorption equilibrium. The kinetic process was investigated using the pseudo-first-order model, pseudo-second-order model and intra-particle diffusion model, respectively. The results show that the magnetic-chitosan particle is amorphous of irregular clumps in the surface with groups of RNH(2), RNH(3), Fe-O, etc. Bradley's equation and two-sites Langmuir isotherms were fitted well with the adsorption equilibrium data; the maximal amount of adsorption of 20.96-23.98 mg/l and free energy of 2.48 kJ/mol were obtained from the Bradley's equation, two-sites Langmuir isotherm and DKR modeling, respectively. The pseudo-second-order with the initial adsorption rate 2.08 mg/g min was suitable to describe the kinetic process of fluoride adsorption onto the adsorbent. In overall, the major mechanism of fluoride adsorption onto the heterogeneous surface of magnetic-chitosan particle was proposed in the study.  相似文献   

18.
Environmental risk index: a tool to assess the safety of dams for leachate   总被引:3,自引:0,他引:3  
Bagasse-based ion adsorbent was prepared by chemically modifying bagasse with acrylonitrile and hydroxylamine with the aim to enhance the ability of removal heavy metal ions from wastewater. The purified modified materials were characterized by Fourier transform infrared (FT-IR). Batch experiments of Cu(II) ions (Cu(2+)) adsorption on the bagasse adsorbent were performed. Effects of the adsorbent dosage, initial pH of the solution, temperature of the Cu(2+) solution, and initial Cu(2+) concentration on the adsorption of Cu(2+) were studied, respectively. Langmuir and Freundlich models were applied to describe the adsorption isotherm of Cu(2+) by bagasse adsorbent. The results indicated that Langmuir model fitted the adsorption equilibrium data better than the Freundlich isotherm model. Two kinetic models, including pseudo-first-order and pseudo-second-order, were also used to analyze the Cu(2+) adsorption process, and the results showed that the pseudo-second-order with correlation coefficients greater than 0.999 was more suitable than pseudo-first-order.  相似文献   

19.
Studies on a batch sorption system using Tectona grandis l.f. as adsorbent was investigated to remove copper(II) from aqueous solutions. The adsorption experiments were performed under various conditions such as different initial concentrations, pH, adsorbent dosage and adsorbent particle size. The data showed that 0.1 g of Tectona grandis l.f. was found to remove 71.66% of 20 mg/L copper(II) from 30 mL aqueous solution in 180 min. The experimental equilibrium data were adjusted by the adsorption isotherms from Langmuir and Freundlich models and their equilibrium parameters were determined. The best-adjusted model to the experimental equilibrium data for Tectona grandis l.f. was the Langmuir model. Using the Langmuir model equation, the monolayer sorption capacity of Tectona grandis l.f. was evaluated and found to be 95.40 mg/g. The optimum pH value was found to be 5.5. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The dynamic data fitted the pseudo-second-order kinetic model.  相似文献   

20.
通过静电纺丝技术制备酰肟化功能改性的纳米SiO_2/聚乙烯醇(SiO_2/PVA)复合纤维膜。采用SEM、FTIR、DSC和TGA进行表征分析;考察了在水溶液中随pH值和接触时间的变化纤维膜对金属离子吸附效果的影响。研究表明,在pH=6的条件下,纳米纤维对金属离子的吸附最佳,对Cu2+、Ni 2+金属离子的最大吸附量分别为143.7mg/g和125.1mg/g,平衡吸附时间为240min。在纤维膜吸附的前50min内,SiO_2/PVA纤维膜对Cu2+和Ni 2+金属离子的吸附量为126.8mg/g和109.8mg/g,吸附率分别为90.18%和89.92%。通过吸附等温线和吸附方程考察SiO_2/PVA纤维对Cu2+和Ni 2+金属离子的吸附行为。结果显示,复合纤维对两种金属离子的吸附满足拟二级动力学方程,热力学分析表明,吸附过程符合Langmuir单层吸附。使用酸处理纤维膜进行再生吸附试验,发现循环4次试验后,吸附效率达到53%,结果说明复合纤维膜可作为可再生金属离子吸附材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号