首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Studies of the functional properties and developmental potentials of immediate post-thymic cells have been hampered by the lack of reliable markers with which to distinguish recent thymic emigrants (RTE) from the bulk of peripheral T cells. In the present study, the intrathymic FITC-labeling technique was used in concert with three-color flow-cytometric analysis to identify, phenotypically characterize, and study the short term fate of RTE in normal rats. The results indicated that between 3 and 4% of total T cells in lymph node and spleen of 5- to 8-wk-old rats had been released from the thymus within the preceding 24 h. Unlike the bulk of the peripheral T cells, which had a Thy1-, CD45RC+, and/or RT6+ phenotype, these RTE were Thy1+, CD45RC-, and RT6-. Furthermore, two discrete subsets of RTE were defined: a major subset (approximately 95%) of CD4+ or 8+ (single positive), TCR-alpha beta hi T cells that resembled medullary thymocytes; and a minor subset (approximately 5%) of CD4+ and 8+ (double positive), TCR-alpha beta low T cells that resembled cortical thymocytes. The following evidence suggested that most if not all Thy1+ T cells in young adult rats are RTE and their immediate descendants: 1) thymectomy (but not sham thymectomy) selectively depleted Thy1+ T cells from lymph node within 3 to 7 days, even in adrenalectomized rats; 2) most FITC-labeled RTE differentiated into Thy1-, CD45RC+, RT6+ T cells within 7 days of release from the thymus; 3) transitional phenotypes of Thy1+ T cells, including Thy1low, CD45RC+, and RT6+, were observed in normal, as well as in intrathymic, FITC-injected rats; 4) most T cells in neonatal rats were Thy1+ and RT6-, whereas their descendants were Thy1- and RT6+. These experiments demonstrate that most RTE in normal rats are phenotypically (and presumably developmentally) immature at the time of release from the thymus, and progressively acquire the phenotypic attributes of more mature T cells post-thymically. These unique phenotypic attributes should expedite the isolation of RTE and their immediate descendants for definitive studies of their developmental and functional properties.  相似文献   

3.
CD4 T cells bearing high (240-190 kDa) and low (180 kDa) molecular mass isoforms of the leukocyte common antigen CD45 define functionally distinct subsets which have been equated with naive and memory T cells. In the rat, CD4 T cells expressing a high molecular mass isoform [identified by monoclonal antibody MRC-OX22 (anti-CD45RC)] exchange this for the 180 kDa molecule (CD45RC-) when stimulated by antigen. Here we show, by transferring mature allotype-marked CD45RC- CD4 T cells (depleted of immature Thy-1+ CD45RC- recent thymic emigrants) into normal euthymic recipients, that many T cells re-express the high molecular mass isoform in less than 6 h. By 24 h, 30-60% of CD45RC- CD4 T cells became CD45RC+; within a week the entire cohort appeared to exchange the low for the high molecular mass isoform. Isoform exchange was dynamic and many CD4 T cells returned once again to the CD45RC- state. CD45RC- CD4 T cells declined in number more rapidly than the CD45RC+ subset after transfer. The results suggest that CD45R isoforms distinguish between resting T cells (CD45RC+) and those which have encountered antigen in the recent past. CD45R isoforms would appear to be unsuitable markers of naive and memory T cells.  相似文献   

4.
The extracellular signal-regulated kinase (ERK), the c-Jun NH2-terminal kinase (JNK), and p38 MAP kinase pathways are triggered upon ligation of the antigen-specific T cell receptor (TCR). During the development of T cells in the thymus, the ERK pathway is required for differentiation of CD4(-)CD8(-) into CD4(+)CD8(+) double positive (DP) thymocytes, positive selection of DP cells, and their maturation into CD4(+) cells. However, the ERK pathway is not required for negative selection. Here, we show that JNK is activated in DP thymocytes in vivo in response to signals that initiate negative selection. The activation of JNK in these cells appears to be mediated by the MAP kinase kinase MKK7 since high levels of MKK7 and low levels of Sek-1/MKK4 gene expression were detected in thymocytes. Using dominant negative JNK transgenic mice, we show that inhibition of the JNK pathway reduces the in vivo deletion of DP thymocytes. In addition, the increased resistance of DP thymocytes to cell death in these mice produces an accelerated reconstitution of normal thymic populations upon in vivo DP elimination. Together, these data indicate that the JNK pathway contributes to the deletion of DP thymocytes by apoptosis in response to TCR-derived and other thymic environment- mediated signals.  相似文献   

5.
AIDS is characterized by a progressive decrease of CD4(+) helper T lymphocytes. Destruction of these cells may involve programmed cell death, apoptosis. It has previously been reported that apoptosis can be induced even in noninfected cells by HIV-1 gp120 and anti-gp120 antibodies. HIV-1 gp120 binds to T cells via CD4 and the chemokine coreceptor CXCR4 (fusin/LESTR). Therefore, we investigated whether CD4 and CXCR4 mediate gp120-induced apoptosis. We used human peripheral blood lymphocytes, malignant T cells, and CD4/CXCR4 transfectants, and found cell death induced by both cell surface receptors, CD4 and CXCR4. The induced cell death was rapid, independent of known caspases, and lacking oligonucleosomal DNA fragmentation. In addition, the death signals were not propagated via p56(lck) and Gialpha. However, the cells showed chromatin condensation, morphological shrinkage, membrane inversion, and reduced mitochondrial transmembrane potential indicative of apoptosis. Significantly, apoptosis was exclusively observed in CD4(+) but not in CD8(+) T cells, and apoptosis triggered via CXCR4 was inhibited by stromal cell-derived factor-1, the natural CXCR4 ligand. Thus, this mechanism of apoptosis might contribute to T cell depletion in AIDS and might have major implications for therapeutic intervention.  相似文献   

6.
Vaccination of mice with activated autoantigen-reactive CD4(+) T cells (T cell vaccination, TCV) has been shown to induce protection from the subsequent induction of a variety of experimental autoimmune diseases, including experimental allergic encephalomyelitis (EAE). Although the mechanisms involved in TCV-mediated protection are not completely known, there is some evidence that TCV induces CD8(+) regulatory T cells that are specific for pathogenic CD4(+) T cells. Previously, we demonstrated that, after superantigen administration in vivo, CD8(+) T cells emerge that preferentially lyse and regulate activated autologous CD4(+) T cells in a T cell receptor (TCR) Vbeta-specific manner. This TCR Vbeta-specific regulation is not observed in beta2-microglobulin-deficient mice and is inhibited, in vitro, by antibody to Qa-1. We now show that similar Vbeta8-specific Qa-1-restricted CD8(+) T cells are also induced by TCV with activated CD4(+) Vbeta8(+) T cells. These CD8(+) T cells specifically lyse murine or human transfectants coexpressing Qa-1 and murine TCR Vbeta8. Further, CD8(+) T cell hybridoma clones generated from B10.PL mice vaccinated with a myelin basic protein-specific CD4(+)Vbeta8(+) T cell clone specifically recognize other CD4(+) T cells and T cell tumors that express Vbeta8 and the syngeneic Qa-1(a) but not the allogeneic Qa-1(b) molecule. Thus, Vbeta-specific Qa-1-restricted CD8(+) T cells are induced by activated CD4(+) T cells. We suggest that these CD8(+) T cells may function to specifically regulate activated CD4(+) T cells during immune responses.  相似文献   

7.
In this study we quantified CD8+ and CD4+ T cells in T lymphocytopenic BB rats as compared with control rats at given stages along the maturational pathway from immature thymocytes to mature peripheral T cells. Our results show that BB rats exhibit abnormal thymocyte subset distribution. Numbers of mature TCRhigh/CD4-8+ thymocytes, and also their TCRhigh/CD4+8+ precursors were decreased, as were levels of CD8 expression on all thymocyte subsets investigated. By analogy with mouse thymocyte development, these findings suggest a decreased efficiency for positive selection of CD8 precursors in BB rats. Furthermore, as related to the number of available mature TCRhigh single positive thymocytes, numbers of CD4+ and CD8+ T cells most recently migrated from the thymus were severely decreased in BB blood, indicating either reduced thymic output or rapid cell death after migration. Subsequently, in peripheral blood and cervical lymph nodes, a 95% decrease of CD8+ and a 50 to 80% decrease of CD4+ T cells were demonstrated upon maturation from recent thymic migrants to mature peripheral T cells, leaving the BB rat with a severely reduced T cell population, consisting of CD4+ T cells and a minute population of CD8+ T cells. The vast majority of the latter was found to have an immature peripheral phenotype. Possible consequences of our findings for the generation of autoreactive CD8+ T cells are discussed.  相似文献   

8.
The induction of optimal systemic antitumor immunity involves the priming of both CD4(+) and CD8(+) T cells specific for tumor-associated antigens. The role of CD4(+) T helper cells (Th) in this response has been largely attributed to providing regulatory signals required for the priming of major histocompatibility complex class I restricted CD8(+) cytolytic T lymphocytes, which are thought to serve as the dominant effector cell mediating tumor killing. However, analysis of the effector phase of tumor rejection induced by vaccination with irradiated tumor cells transduced to secrete granulocyte/macrophage colony-stimulating factor indicates a far broader role for CD4(+) T cells in orchestrating the host response to tumor. This form of immunization leads to the simultaneous induction of Th1 and Th2 responses, both of which are required for maximal systemic antitumor immunity. Cytokines produced by these CD4(+) T cells activate eosinophils as well as macrophages that produce both superoxide and nitric oxide. Both of these cell types then collaborate within the site of tumor challenge to cause its destruction.  相似文献   

9.
One of the diabetes susceptibility genes of the BB rat is a mutation at the lyp locus that decreases the thymic output of T cells and the life span of most recent thymic emigrants (RTE). Consequently, there is a 10-fold reduction in the number of CD4+ and CD8+ T cells in secondary lymphoid organs. Results presented in this work demonstrate that the BB rat lyp mutation is associated with an accelerated apoptotic death in vitro of mature CD4+ 8- and CD4- 8+ thymocytes and peripheral T cells. The stability of the pool of recirculating T cells (PRL) of BB rats over time results from a > 10-fold increase in the mitotic activity of T cells as assessed in vivo by bromodeoxyuridine incorporation. This increased mitotic activity is not observed when BB T cells develop in the context of a normal sized PRL. MHC haploidentical WF and BB rats differ at minor histocompatibility loci. Intravenous injection of (WF x BB)F1 T cells into euthymic BB rats led to the rejection of donor T cells within 3 wk by unprimed recipients and within 1 wk by primed recipients. This secondary immune response was unaffected by postpriming thymectomy. F1 T cells were not rejected, but rather expanded after their injection into thymectomized BB rats that had been primed as early as 48 h after thymectomy. These results strongly suggest that the BB rat PRL is devoid of long-lived naive T cells and that rescue of recent thymic emigrants from programmed cell death is initiated by Ags, exclusively.  相似文献   

10.
11.
Little is understood of the anatomical fate of activated T lymphocytes and the consequences they have on the tissues into which they migrate. Previous work has suggested that damaged lymphocytes migrate to the liver. This study compares class I versus class II major histocompatibility complex (MHC)-restricted ovalbumin-specific T cell antigen receptor (TCR) transgenic mice to demonstrate that after in vivo activation with antigen the emergence of CD4(-)CD8(-)B220(+) T cells occurs more frequently from a CD8(+) precursor than from CD4(+) T cells. Furthermore, this change in phenotype is conferred only by the high affinity native peptide antigen and not by lower affinity peptide variants. After activation of CD8(+) cells with only the high affinity peptide, there is also a dramatically increased number of liver lymphocytes with accompanying extensive hepatocyte damage and elevation of serum aspartate transaminase. This was not observed in mice bearing a class II MHC-restricted TCR. The findings show that CD4(-)CD8(-)B220(+) T cells preferentially derive from a CD8(+) precursor after a high intensity TCR signal. After activation, T cells can migrate to the liver and induce hepatocyte damage, and thereby serve as a model of autoimmune hepatitis.  相似文献   

12.
We have previously described a monoclonal antibody (mAb), CZ-1, which reacts with an epitope expressed on most peripheral basophils, natural killer cells, B cells, and CD8+ T cells, but not with most thymocytes or peripheral CD4+ T cells. Here we show that mAb CZ-1 defines a sialic acid-dependent epitope associated with a subpopulation of CD45 molecules. This conclusion is based on the ability to block binding of mAb CZ-1 by sialic acid, neuramin-lactose, neuraminidase, and mAb to CD45RB, and by expression of the epitope on transfected psi 2 cells expressing exon B of CD45. The results suggest that the CZ-1 epitope is a post-translational modification expressed on a subpopulation of the CD45 molecules also expressing the B exon. Expression of the CZ-1 epitope was required for freshly isolated lymphocytes to respond to interleukin-2 (IL-2). Depletion of CZ-1+ cells by C' or by cell sorting of thymocytes or splenocytes eliminated the IL-2 responsive cells. The subpopulations of thymocytes and CD4+ splenocytes responding to IL-2 were exclusively within the small CZ-1+ subpopulation. mAb CZ-1 was also used to subdivide CD45+ and CD45RB+ splenocytes into IL-2-responsive and -nonresponsive subpopulations. The CZ-1 epitope was also expressed on virtually all lymphokine-activated killer cell precursors. These data, thus, indicate that cells responsive to IL-2 express this sialated modification of CD45.  相似文献   

13.
We have previously shown that infection of CD4(+) T lymphocytes with the T-lymphotropic human herpesvirus 7 (HHV-7) downregulates surface CD4, which represents the high-affinity receptor for HHV-7. In this study, we report that HHV-7 infection also causes a progressive loss of the surface CXC-chemokine receptor 4 (CXCR4) in CD4(+) T cells, accompanied by a reduced intracellular Ca2+ flux and chemotaxis in response to stromal cell-derived factor-1 (SDF-1), the specific CXCR4 ligand. Moreover, CXCR4 is downregulated from the surface of HHV-7-infected T cells independently of CD4. Because intracellular CXCR4 antigen and mRNA levels are unaffected in productively HHV-7-infected cells, the downregulation of CXCR4 apparently does not involve a transcritional block. Since CXCR4 functions in association with CD4 to permit entry of several human immunodeficiency virus (HIV) isolates, the potential of HHV-7 to persistently downregulate the surface expression of CXCR4 may provide novel strategies for limiting HIV infection.  相似文献   

14.
Treatment of C57BL/6 mice with one transfusion of BALB/c spleen cells and anti-CD154 (anti-CD40-ligand) antibody permits BALB/c islet grafts to survive indefinitely and BALB/c skin grafts to survive for approximately 50 d without further intervention. The protocol induces long-term allograft survival, but the mechanism is unknown. We now report: (a) addition of thymectomy to the protocol permitted skin allografts to survive for > 100 d, suggesting that graft rejection in euthymic mice results from thymic export of alloreactive T cells. (b) Clonal deletion is not the mechanism of underlying long-term graft survival, as recipient thymectomized mice were immunocompetent and harbor alloreactive T cells. (c) Induction of skin allograft acceptance initially depended on the presence of IFN-gamma, CTLA4, and CD4(+) T cells. Addition of anti-CTLA4 or anti-IFN-gamma mAb to the protocol was associated with prompt graft rejection, whereas anti-IL-4 mAb had no effect. The role of IFN-gamma was confirmed using knockout mice. (d) Graft survival was associated with the absence of IFN-gamma in the graft. (e) Long-term graft maintenance required the continued presence of CD4(+) T cells. The results suggest that, with modification, our short-term protocol may yield a procedure for the induction of long-term graft survival without prolonged immunosuppression.  相似文献   

15.
In this article, we show that passage in SCID mice rendered a human CD4(+) T-cell line (CEM cells) highly susceptible to infection by macrophage-tropic (M-tropic) strains and primary clinical isolates of human immunodeficiency virus type 1 (HIV-1). This in vivo-acquired permissiveness of CEM cells was associated with the induction of a CD45RO+ phenotype as well as of some beta-chemokine receptors. Regulated upon activation, normal T-cell expressed and secreted chemokine entirely inhibited the ability of M-tropic HIV-1 strains to infect these cells. These findings may lead to new approaches in investigating in vivo the capacity of different HIV strains to exploit chemokine receptors in relation to the dynamics of the activation and/or differentiation state of human CD4(+) T cells.  相似文献   

16.
Thymocytes must bind major histocompatibility complex (MHC) proteins on thymic epithelial cells in order to mature into either CD8+ cytotoxic T cells or CD4+ helper T cells. Thymic precursors express both CD8 and CD4, and it has been suggested that the intracellular signals generated by CD8 or CD4 binding to class I or II MHC, respectively, might influence the fate of uncommitted cells. Here we test the notion that intracellular signaling by CD4 directs the development of thymocytes to a CD4 lineage. A hybrid protein consisting of the CD8 extracellular and transmembrane domains and the cytoplasmic domain of CD4 (CD884) should bind class I MHC but deliver a CD4 intracellular signal. We find that expression of a hybrid CD884 protein in thymocytes of transgenic mice leads to the development of large numbers of class I MHC-specific, CD4 lineage T cells. We discuss these results in terms of current models for CD4 and CD8 lineage commitment.  相似文献   

17.
Evidence indicates that cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) may negatively regulate T cell activation, but the basis for the inhibitory effect remains unknown. We report here that cross-linking of CTLA-4 induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T cells. CD4(+) T helper type 1 (Th1), Th2, and Th0 clones all secrete TGF-beta after antibody cross-linking of CTLA-4, indicating that induction of TGF-beta by CTLA-4 signaling represents a ubiquitous feature of murine CD4(+) T cells. Stimulation of the CD3-T cell antigen receptor complex does not independently induce TGF-beta, but is required for optimal CTLA-4-mediated TGF-beta production. The consequences of cross-linking of CTLA-4, together with CD3 and CD28, include inhibition of T cell proliferation and interleukin (IL)-2 secretion, as well as suppression of both interferon gamma (Th1) and IL-4 (Th2). Moreover, addition of anti-TGF-beta partially reverses this T cell suppression. When CTLA-4 was cross-linked in T cell populations from TGF-beta1 gene-deleted (TGF-beta1(-/-)) mice, the T cell responses were only suppressed 38% compared with 95% in wild-type mice. Our data demonstrate that engagement of CTLA-4 leads to CD4(+) T cell production of TGF-beta, which, in part, contributes to the downregulation of T cell activation. CTLA-4, through TGF-beta, may serve as a counterbalance for CD28 costimulation of IL-2 and CD4(+) T cell activation.  相似文献   

18.
The antigen-binding receptor expressed on most T lymphocytes consists of disulfide-linked clonotypic alphabeta heterodimers noncovalently associated with monomeric CD3gamma,delta,epsilon proteins and disulfide-linked zeta zeta homodimers, collectively referred to as the T cell antigen receptor (TCR) complex. Here, we examined and compared the disulfide linkage status of newly synthesized TCR proteins in murine CD4(+)CD8(+) thymocytes and splenic T cells. These studies demonstrate that CD3delta proteins exist as both monomeric and oligomeric (disulfide-linked) species that differentially assemble with CD3epsilon subunits in CD4(+)CD8(+) thymocytes and splenic T cells. Interestingly, unlike previous results on glucose trimming and TCR assembly of CD3delta proteins in splenic T cells (Van Leeuwen, J. E. M., and K. P. Kearse (1996) J. Biol. Chem. 271, 9660-9665), we found that glucose residues were not invariably removed from CD3delta glycoproteins prior to their assembly with CD3epsilon subunits in CD4(+)CD8(+) thymocytes. Finally, these studies show that calnexin associates with both monomeric and disulfide-linked CD3delta proteins in murine T cells. The data in the current report demonstrate that CD3delta proteins exist as both monomeric and disulfide-linked molecules in murine T cells that differentially associate with partner TCR chains in CD4(+)CD8(+) thymocytes and splenic T cells. These results are consistent with the concept that folding and assembly of CD3delta proteins is a function of their oxidation state.  相似文献   

19.
Although the thymus is primarily noted for the export of T cells to the periphery, a small influx of cells has also been observed. It is still a matter of debate whether entry into the thymus depends on prior activation. The phenotypes, sources and degree of immigration are largely unknown. We monitored by quantitative immunohistochemistry the entry of cells from the periphery into the rat thymus in three experimental models. We injected i.v. recirculating, small, nonactivated CD4+ T cell subsets, often referred to as naive (CD45RC+) and memory or antigen-experienced (CD45RC-) cells, purified from thoracic duct lymph of allotype-marked donors, allotype-marked leukocytes released from spleen or lung transplants, or leukocytes labeled in the periphery for 12 weeks during the S-phase of the cell cycle by oral application of 5-bromo-2-deoxyuridine (BrdUrd). Early after i.v. injection (0.5 h), significantly more antigen-experienced (CD45RC-) CD4+ T cells entered the thymus, and by 24 h four times as many cells from the CD45RC- subset as from the CD45RC+ subset had entered the thymus and localized to the medulla. None of the thymic entrants expressed the interleukin (IL)-2 receptor. Following spleen transplantation approximately 40% of donor cells entering the thymic medulla were T cells and approximately 55% were B cells. In contrast, from a lung transplant, approximately 85% of peripheral immigrants were T cells and approximately 10% were B cells. After both procedures, a small number of NK cells and monocytes/macrophages were found among the immigrants (< 5%). Rats were fed BrdUrd continuously for 12 weeks, a procedure which labeled approximately 30% of peripheral lymphocytes but not cortical thymocytes. BrdUrd-labeled cells were localized almost exclusively to the thymic medulla and represented approximately 10% of medullary cells. Of the thymic immigrants approximately 50% were T cells, approximately 30% were B cells (including approximately 15% IgD+ cells), approximately 15% were NK cells and the remainder (approximately 5%) were monocytes/macrophages. Only a quarter of BrdUrd-labeled cells expressed the IL-2 receptor. The thymus is continuously infiltrated by both activated and nonactivated leukocytes from the periphery, including T cells, B cells, NK cells and monocytes. These immigrants are supplied by lymphoid and nonlymphoid organs in a characteristic subset composition. Their entry is facilitated by prior antigen experience or activation. Thus, the participation of the thymic medulla in general leukocyte traffic suggests a mechanism by which the T cell repertoire could potentially be modulated by the peripheral tissues.  相似文献   

20.
Ligation of the protein tyrosine phosphatase CD45 on both mature and immature T cells modulates the amplitude of TCR-mediated signals. In this work, we have evaluated the consequences of CD45 ligation on immature T cells, in the absence of TCR engagement. Cross-linking of CD45 on thymocytes by mAbs led to the induction of cellular death, characterized by a reduction in mitochondrial membrane potential (delta psi(m)), production of reactive oxygen species, loss in membrane asymmetry, exposure of phosphatidylserine residues, and incorporation of vital dyes. In sharp contrast to most stimuli causing thymocyte death, CD45 cross-linking did not lead to DNA degradation. Cell death was not blocked by Bcl-2 overexpression or treatment with caspase inhibitor. However, death was inhibited by the addition of scavengers of reactive oxygen species. We also established that susceptibility to CD45-mediated death is acquired during the transition of early CD4- CD8- TCR- T cell precursors into CD4+ CD8+ TCR- thymocytes and is increased with further acquisition of surface TCR on these cells. Moreover, mature thymocytes were much less sensitive to CD45 cross-linking than CD4+ CD8+ cells. We propose that during T cell development, CD45 ligation could induce the death of those immature thymocytes that do not fulfill the requirements for positive selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号