共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
在电力系统中风电装机容量增长的背景下,高精度的超短期风功率预测是保证系统可靠运行的重要基础。为此,提出一种以复数据经验模态分解的噪声辅助信号分解法(NACEMD)和Elman神经网络为基础的超短期风功率组合预测方法。在风功率序列中添加白噪声,使用NACEMD将其按照不同波动尺度逐级分解,得到不同时频特性的分量,然后利用Elman神经网络对各分量建立预测模型,以各分量的不同时频特性为基准对预测结果进行叠加,得到风功率预测值。实例分析表明,提出的组合预测法既可进一步减轻现有方法中存在的模态混叠现象,具备较高的预测精度。研究成果可为风功率预测提供参考。 相似文献
3.
目前风功率预测多为风功率期望的点预测,且以采样间隔较大的功率序列作为建模序列,这样会降低预测模型对风功率时序特征模拟的准确度和可信度。文中基于小采样间隔风功率序列,提出ARMAX-GARCH风功率预测模型。通过构造风功率新息序列,结合小时平均风功率序列,建立ARMAX点预测模型,采用BIC最小信息准则和相关性分析实现模型定阶和外生变量选择;采用GARCH模型模拟残差的波动特性实现区间预测。以海岛微电网实测风功率数据为例,进行提前1 h风功率预测。结果表明,与持续法、ARMA和RBF神经网络相比,该预测模型能显著提高风功率期望的点预测精度并具有较好的区间预测效果。 相似文献
4.
为更精准地预测风功率,首先结合改进的网格法和K均值聚类(Kmeans++)算法预处理风机数据,以剔除异常数据,引入临界概率并根据聚类的实际物理意义设置聚类中心点个数,临界概率同时反映风机性能。其次,利用改进的蝙蝠算法(改进BA)结合前馈(BP)神经网络建立风功率预测模型,BA中引入速度权重因子和高斯变异来避免陷入局部极值。最后,针对风功率模型的预测误差建立自回归滑动平均(ARMA)模型,采用误差的ARMA模型来修正风功率的预测值。结果表明,BA-BP-ARMA组合模型的预测效果更好。研究成果可为风功率预测提供参考。 相似文献
5.
6.
基于Elman神经网络的短期风电功率预测 总被引:1,自引:0,他引:1
为提高风电场输出功率预测精度,提出一种动态基于神经网络的功率预测方法。根据实际运行的风电场相关风速、相关风向和风电功率的历史数据,建立了基于Elman神经元网络的短期风电功率预测模型。运用多层Elman神经网络模型对西北某风电场实际1h和24h的风电输出功率预测,与BP神经网络模型对比,经仿真分析证明前者具有预测精度高的特点,三隐含层Elman神经网络模型预测效果最佳。这表明利用Elman回归神经网络建模对风电功率进行预测是可行的,能有效提高功率预测精度。 相似文献
7.
风功率预测在不同应用场景中发挥着越来越重要的作用,从时间尺度上可分为超短期、短期和中长期的风功率预测。基于短期风功率预测对训练时间和预测精度均有较高要求,提出了一种利用共轭梯度(cconjugate gradient,CG)法优化核极限学习机(kernel extreme learning machine,KELM)的方法,即利用共轭梯度核极限学习机(CGKELM)方法来预测风功率,在保证预测精度的前提下,进一步缩短KELM的训练时间。通过利用某风电场的实测数据进行仿真,以均方根误差和相对标准差作为评价指标,将仿真结果分别与反向传播(BP)神经网络、最小二乘支持向量机(LSSVM)和其他KELM方法得到的结果进行比较。研究结果表明:在短期风功率预测方面,CGKELM训练时间比其他方法短,且参数设置简单。该结果证明了CGKELM的有效性,对风电项目的投资决策具有一定的参考价值。 相似文献
8.
9.
基于小波变换与Elman神经网络的短期风速组合预测 总被引:1,自引:0,他引:1
风速的准确预测对风电场发电系统的经济和安全运行有着重要的作用。为了克服风速随机性强的缺点,提高短期风速预测的精度,提出了一种将小波变换与Elman神经网络相结合的短期风速组合预测模型。该模型由小波预处理模块和神经网络预测模块组成。首先利用小波预处理模块将风速序列作多尺度分解,重构得到不同频段的子序列,然后利用Elman神经网络模块分别对其训练和预测。实际风速预测结果表明,与单一的Elman和ARMA法相比,该组合预测模型的预测精度有较大的改善,可以用于风电场短期风速的预测。 相似文献
10.
为提高风电输出功率预测精度,提出一种基于RBF-BP组合神经网络模型的短期风电功率预测方法。在考虑尾流等因素影响的基础上,对风速进行预处理。根据相关历史数据,建立RBF-BP组合神经网络短期风电功率预测模型,对风电输出功率进行预测。仿真分析结果表明,该预测方法能有效提高风电输出功率预测精度。 相似文献
11.
分析了某面板堆石坝运行初期坝体的监测资料,选择水压分量与时效分量为影响因子构建逐步回归分析模型,应用反馈神经网络理论建立Elman神经网络模型,并与逐步回归模型预测精度做了对比分析.结果表明,Elman神经网络模型预测精度高、可靠,有助于分析大坝的安全性态. 相似文献
12.
13.
准确地预测光伏发电功率,有利于提高电网系统运行的可靠性和经济性。分析各个气象因素对光伏发电功率的影响,确立了关键的气象因素,并利用小波分析获得气象因子样本集和光伏功率样本集不同频带下的小波系数作为神经网络的输入训练集,结合Elman神经网络建立不同天气条件下的光伏功率预测模型。提出基于自适应遗传算法优化的Elman神经网络模型,优化后的Elman神经网络在晴天、阴天、雨天3种情况下预测值的平均相对误差率分别为5.43%、8.26%、14.15%,相较于Elman神经网络分别降低了13.16%、16.61%、17.33%,改善了Elman神经网络的预测精度,提高了Elman神经网络的学习能力和泛化能力,验证了所提方法的有效性。 相似文献
14.
鉴于准确预测风功率对风电并网系统安全、稳定运行具有重要意义,提出了基于Bagging神经网络集成的风功率预测模型。先利用拉伊达(3σ)准则对数据进行预处理得到有效的风机数据,结合灰色关联度和Relief算法对数据进行特征提取;其次在Bagging集成学习中使用Bootstrap抽样,随机产生K个训练集并用自组织RBF神经网络(ErrCor-RBF)分别对风功率进行预测;最后叠加K个预测结果取均值得到最终预测结果。仿真结果表明,Bagging神经网络集成的风功率预测模型性能更好、预测精度较高。 相似文献
15.
16.
《电力与能源》2019,(3)
风速预测在风电场安全并网和智能化管理中起着决定性作用,针对风速的非线性和不稳定等特点,提出了一种基于变分模态分解(VMD)和改进鲸鱼算法优化的模糊神经网络(VMD-CGWOA-ANFIS)的混合预测模型。该模型首先使用变分模态分解技术将原始风速序列分解为一系列子序列,而后对各子序列分别采用模糊神经网络(ANFIS)建立预测模型。为进一步提高预测精度,同时克服鲸鱼(WOA)算法容易陷入局部最优和收敛过早的缺点,引入共轭梯度算法(CG)对WOA进行改进,利用改进的CGWOA算法对ANFIS参数进行优化。使用优化后的ANFIS分别对变分模态分解后的各子序列进行预测,最后将预测后的各子序列叠加得到最终预测结果。为测试模型的有效性,选择宁夏地区3组实际风电数据进行模拟试验,将ANFIS,VMD-ANFIS,VMD-WOA-ANFIS与提出模型进行对比,结果表明所提出的混合模型预测精度明显高于其他对比模型。 相似文献
17.
一种实时校正的改进BP神经网络超短期 总被引:1,自引:0,他引:1
摘要: 风电机组出力可由风速计算得出,提高风速预测精度对减小风电并网冲击、合理调度风能资源至关重要。基于风电场气象及风速数据的时间连续性,提出了一种加入误差实时校正环节及风速变化趋势分析的改进方法介绍,在提高风速预测精度的同时有效改善了过校正情况。采用某个风电场的实际运行数据进行了仿真,结果表明,所提出的改进BP神经网络风速预测模型方法具有较好的预测精度。 相似文献
18.
19.
风电大规模并网使风电对电网的冲击问题越来越凸显,许多地方出现了拉闸限电的情形,随着百万千瓦级风电基地、千万千瓦级风电基地的规划及建设,急需开展行之有效的风电场风电功率预报,来满足风电上网调度的实际需求,利用数值模式预报的风速、风向等预报场及风电场逐时风电功率资料,通过神经元网络方法进行了风电场风电功率预报试验,预报精度与2002—2006年欧洲风能计划中的风电场风电功率预报精度相当。 相似文献