首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
鲁火清  卢周广  沈冬  唐有根 《电池》2012,42(4):229-231
从铝活化-钝化机理、添加合金元素(镓、铟、镁、锡、锰、铋及铅等)对铝阳极性能的影响等方面,综述了铝-空气电池铝合金阳极的发展、研究及应用概况。  相似文献   

2.
碱性铝-空气电池用铝合金阳极的研究进展   总被引:7,自引:0,他引:7  
近年来,通过研制各种新型铝合金阳极及相应电解质的添加剂,使铝-空气电池的研究取得了很大的进展.从铝阳极的反应活化、钝化机理、添加合金元素的影响和缓蚀剂等方面,综述了近几十年来,国内外碱性铝-空气电池合金阳极材料的发展和应用概况.  相似文献   

3.
碱性铝电池是一种新型高能化学电源,近年来因其优异的电化学性能和环境协调性能而备受国内外学者关注。但在电池工作过程中,铝合金阳极会与碱性电解液发生剧烈反应而产生大量氢气,严重影响电池性能。研究发现,通过添加缓蚀剂可有效解决上述问题。介绍了碱性铝电池阳极缓蚀剂的研究进展;着重阐述了缓蚀剂的缓蚀机理;并指出了目前该领域缓蚀剂研究存在的问题及今后的发展方向。  相似文献   

4.
选择SnCl2和ZnCl2作为中性溶液中的添加剂进行研究,中性母液为0.5mol/L NaCl,Al-In合金电极为工作电极。采用多种电化学实验方法测试各种添加剂对Al-In电极在中性及碱性电解液内的阳极极化曲线、析氢曲线、阳极利用率、开路电压、自腐蚀电位的影响。结果表明,引入的添加剂均能不同程度地提高Al-In阳极电化学性能,使腐蚀电位负移,抑制析氢反应的发生,提高阳极利用率。  相似文献   

5.
快速厚膜铝阳极氧化液的研究   总被引:2,自引:0,他引:2  
我们研究了一种工艺温度相对较高,溶液成本相对较低的混合快速厚膜铝阳极氧化溶液。结果表明,在以硫酸和甘油为基础的溶液中,经选择加入了一种有机酸钠盐以后,溶液的槽电压升高不明显。溶液的成膜速度加快,成膜时溶的工艺温度提高,而溶液的成本却比加入其它有机酸明显下降,比苯果酸性阳氧化溶液成本下降1/4。  相似文献   

6.
铝在碱性电解液中的阳极行为   总被引:3,自引:1,他引:3  
用电化学方法研究了Al(99.999% ̄99.5%)在4mol/LKOH溶液中的阳极行为,结果表明:杂质(Fe,Si,Cu)含量递增,铝的传递电阻变小、腐蚀速度增大,达到稳定开路电位所需时间延长,但50℃时商业铝Al99.82%的极化程度最小,在-1.224V下有400mA/cm2大电流产生;温度升高而铝阳极的活化作用随之增强,但腐蚀也加剧;铝电极在5mmol/LNa2SnO3 4mol/LKOH中的浸泡时间为20min较适合;添加剂Na2SnO3对铝的腐蚀抑制、电化学性能改善都产生有利影响,其最佳浓度为5mmol/L。  相似文献   

7.
铝-氧化银电池由于其高理论能量密度、高功率密度、放电电压平稳、安全可靠等特点,主要应用于鱼雷电池中。从铝合金阳极的活化机理、合金元素和热处理对铝-氧化银电池的铝合金阳极性能的影响等方面,综述了国内外铝-氧化银电池用铝合金阳极材料的研究进展。  相似文献   

8.
为了提高铝的耐蚀性以及活化性能,用电化学方法研究了在4 mol/L KOH溶液中,添加剂Ca(OH)2、C4H4O6KNa以及Na2SnO3对铝阳极(99.999%)电化学性能的影响.结果表明:添加饱和Ca(OH)2 C4H4O6KNa能有效抑制腐蚀,当c(C4H4O6KNa)=15 mmol/L时,Al的缓蚀率达83.54%,且开路电位Eocp负移出现最大值达-1.751 V;添加10 mmol/L Na2SnO3在4 mol/L KOH 15 mmol/L C4H4O6KNa 饱和Ca(OH)2中,不仅使铝的腐蚀速度进一步降低(缓蚀率达86.35%),又能最大程度提高铝阳极的活化,Eocp负移程度最大达-1.800 V.  相似文献   

9.
房尚  周德璧  孔庆然 《电源技术》2011,35(5):528-530
为了提高碱性电池中铝阳极的活化性能、降低其析氢腐蚀,用析氢速率、开路电压测试和塔菲尔曲线、交流阻抗方法,系统的研究了多种添加剂对铝阳极的电化学性能的影响。结果表明:KCl、MnCl2、K2MnO4、Na2WO3、NH2CH2COOH对铝阳极的开路电位负移和抑制析氢均有良好的效果。复配添加剂K2MnO4+KCl和ZnO+KCl分别对铝阳极具有显著的活化作用,并且对抑制析氢有明显的作用。  相似文献   

10.
通过向铝中添加适量的Ga、Bi、Pb等元素,制备了Al-Ga-Bi-Pb合金。用SEM及EDAX对铝合金的微观结构进行了观察和分析,并通过失重法、开路电位、恒流放电等方法,研究了不同条件下退火及淬火对Al-Ga-Bi-Pb合金在4 mol/L KOH溶液中的电化学性能的影响。结果表明:退火处理加速了合金腐蚀并使阳极极化增大;淬火效果受淬火介质的冷却速度和固溶保温温度的影响较大,25℃水淬处理能够减小阳极腐蚀与极化,但70℃水淬处理则使阳极腐蚀增大。  相似文献   

11.
铝合金阳极活化机理研究进展   总被引:13,自引:4,他引:13  
铝合金是一种理想的阳极材料,在化学电源和牺牲阳极方面已得到越来越广泛的应用。综述了近年来铝合金阳极在中性和碱性电解液中活化机理的研究情况,铝合金阳极中合金元素在铝阳极活化过程中的作用机理,溶液中阴离子对铝合金阳极活化过程的影响。具体阐述了中性溶液中含In、Hg、Ga等合金元素的铝合金阳极“溶解沉积”机理,以及在碱性介质中铝合金活化钝化的原因;Cl-、OH-等阴离子在铝合金阳极活化过程中的重要作用  相似文献   

12.
现代电子元器件的高速发展,以及磁性元器件小型化、集成化需求日益增长,推动了纳米级磁性功能薄膜材料的研究。以高饱和磁致伸缩系数、低矫顽力的FeGaB薄膜材料为研究基础,以提高薄膜软磁性能为目标,使用脉冲激光沉积系统制备了FeGaB/Al2O3复合多层薄膜,发现在350℃的生长环境下,未退火的样品成膜质量较好,但软磁性能一般。为了提高磁性能,进行一组不同退火时间下的退火实验,实验发现样品的铁磁共振线宽较大,且退火时间对吸收峰强度影响较大。  相似文献   

13.
锡酸钠与邻胺基苯酚对铝阳极的共同抑氢作用   总被引:2,自引:0,他引:2  
宋玉苏  张燕 《电源技术》2005,29(10):655-658
通过恒电流集气、稳态极化曲线和交流阻抗等电化学方法研究了常温及高温下,碱性介质中锡酸钠与邻胺基苯酚对铝阳极的共同抑氢作用。试验结果表明:锡酸钠与邻胺基苯酚对碱性介质中铝阳极的自腐蚀析氢有着很好的抑制作用。温度升高,铝阳极在碱性介质中的自腐蚀加剧,锡酸钠与邻胺基苯酚的抑氢效率提高,且作用平稳。  相似文献   

14.
研究了室温下(25℃),4mol/L NaOH 3mol/L NaAlO2介质中,添加Na2SnO3、In(OH)3及Na2SnO3 In(OH)3复合物对铝合金性能的影响。用排水法测试了铝合金电极的析氢速度,用恒电流方法和动电位方法测试了电化学性能。结果表明,4mol/L NaOH 3mol/LNaAlO2介质中,Na2SnO3、In(OH)3及Na2SnO3 In(OH)3混合物能降低铝合金电极自腐蚀速率;恒电流放电时,Na2SnO3使铝合金电极稳定电位稍有正移,In(OH)3和Na2SnO3 In(OH)3混合物使铝合金电极稳定电位明显正移。  相似文献   

15.
铝-空气电池铝负极的研究现状   总被引:9,自引:5,他引:4  
陈昌国 《电池》2004,34(6):453-454
综述了近年来铝负极在中性和碱性电解液中的钝化与腐蚀、负差效应的研究情况,杂质Fe、Cu、Si及晶体结构对铝负极的影响以及防止措施,阐述了活化理论与抑制腐蚀的具体方法.  相似文献   

16.
颜剑  苏玉长  卢普涛  苏继桃 《电池》2006,36(2):135-136
利用第一原理赝势平面波方法计算了Al-Li合金中3种平衡相AlLi、Al2Li3和Al4Li9的形成焓,得出AlLi相的形成焓最低,表明当Li 嵌入Al电极时,优先形成AlLi相。为了验证上述结论,将Al薄片与金属锂对电极组成扣式电池,对Al电极进行电化学性能测试和结构表征。实验结果与理论计算的结果相吻合,表明可以采用第一原理赝势平面波方法预测铝作锂离子电池负极时的电化学反应性能。  相似文献   

17.
电解液组成对Al/AgO电池性能的影响   总被引:2,自引:0,他引:2  
李学海  王为  吕霖娜  伊宇 《电源技术》2006,30(9):761-763
用恒电流放电技术和扫描电子显微镜(SEM)研究了添加缓蚀剂Na2SnO3的含量和反应产物NaAlO2的浓度对Al/AgO电池在20%NaOH溶液中的电压、析氢速率和铝阳极表面形貌的影响。结果表明:在NaOH溶液中添加Na2SnO3,可以降低铝阳极的析氢速率,减少铝的阳极极化,改变铝阳极的腐蚀形貌;加入NaAlO2阻碍铝阳极的溶解,降低了Al/AgO电池的电压,不利于Sn的析出,使铝阳极的析氢速率增大。  相似文献   

18.
用熔铸法和压力加工技术制备了三种不同锡含量的铝合金电极材料。采用扫描电子显微镜(SEM)对铝合金电极材料放电后的表面形貌进行了表征,采用排水法测试了合金的析氢速率,借助电化学方法测试了材料的电化学性能。结果表明,铝合金静态析氢量随着锡元素含量增加而减小;研制的新型铝合金负极材料,可望开发用于高比能量的铝合金电池。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号