首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
首先介绍了两种结构完全对称的高灵敏度的摇摆质量陀螺.设计并制作了一种对角驱动的新型摇摆质量微陀螺.利用硅的各向异性湿法腐蚀等MEMS体加工技术,简化了该微陀螺的制作工艺.该微结构的对称性、一致性和加工精度有很大改善,尤其是振动梁、激励部件和敏感部件等关键部件.详细阐述了该微陀螺的工作原理和结构设计,完成了微陀螺关键部件的制作和样机组装.利用NF公司的FRA 5087频率响应分析仪测试了样机大气下的振动模态,其中驱动频率为5.563 2 kHz,检测频率为5.553 4 kHz,频差为9.8 Hz,小于0.2%.利用频谱分析的方法测试了样机的哥氏力.测试结果表明这种摇摆质量微陀螺的设计与制作方法是可行的.  相似文献   

2.
为了探索微机械陀螺突破精度极限的新途径,设计了一种基于环形转子、体硅加工工艺、转子5自由度悬浮的硅微静电陀螺仪.采用玻璃-硅-玻璃键合的三明治式微陀螺结构,提出了包括双边光刻、反应离子刻蚀(RIE)、电感耦合等离子体(ICP)刻蚀、玻-硅静电键合、硅片减薄、多层金属溅射等关键工艺的加工路线.在工艺设计中采用铝牺牲层对转子进行约束,在第2次玻-硅键合后再通过湿法去除牺牲层,以得到可自由活动的转子.基于提出的体硅工艺路线,成功加工出了微陀螺敏感结构,并完成了转子5自由度悬浮和加转实验,测试结果表明大气环境下转子转速可达73.3 r/min.  相似文献   

3.
Various MEMS devices like Accelerometers, Resonators, RF- Filters, Micropumps, Microvalves, Microdispensers and Microthrusters are produced by removing the bulk of the substrate materials. Fabrications of such Microsystems requires the ability to engineer precise three-dimensional structures in the silicon substrate. Fabrication of MEMS faces multiple technological challenges before it can become a commercially viable technology. One key fabrication process required is the deep silicon etching for forming high aspect ratio structures. There is an increasing interest in the use of dry plasma etching for this application because of its anisotropic etching behavior, high etch speed, good uniformity and profile control, high aspect ratio capabilities without having any undesired secondary effects i.e. RIE lags, Loading, microloading, loosing of anisotropic nature of etching as aspect ratio increases, micro-grass and even etch stalling. Developing a DRIE micro-machining process requires a thorough understanding of all plasma parameters, which can affect a silicon etching process and their use to suppress the secondary effects. In this paper our intention is to investigate the influence of etching gas flow, etching gas pressure, passivation gas pressure, ICP coil power, Platen power and etch and passivation time sequence on etch rate and side wall profile. Parameter ramping is a powerful technique used to achieve the requirements of high aspect ratio microstructures (HARMS) for MEMS applications by having high etch rate with good profile/CD control. The results presented here can be used to rationally vary processing parameters in order to meet the microstructural requirements for a particular application.  相似文献   

4.
MEMS应用领域的扩展要求开发硅材料之外其他新型材料的三维微细加工技术.为此,对金属钛这一新型MEMS体材料的三维加工进行了探索.金属钛不仅延展性和导电性好,且断裂韧度高、高低温特性以及生物兼容性好.采用电感耦合等离子体源(inductively coupled plasma,ICP)技术对金属钛进行三维深刻蚀,采用不同刻蚀掩模、氯基刻蚀气体,研究了线圈功率、平板功率和Cl2流量对刻蚀速率和选择比等工艺参数的影响,并对Ti深刻蚀参数进行了优化,得到0.91μm/min的刻蚀速率,可实现光滑表面和陡直侧壁.  相似文献   

5.
In this paper, a novel nanofabrication method that develops from the traditional microelectromechanical system (MEMS) technology of anisotropic etching, deep reaction ion etching, and sacrificial layer process has been reviewed based on our work. With such a technology, nano tips, nano wires, nano beams even nano devices can be fabricated in a batch process. Beams with thickness of only 12 nm, a nano tip with a heater on the beam, and a nano wire whose width and thickness is only 50 nm are demonstrated. The scale effect of the Young's modulus of silicon has been observed and the nano-electronic-mechanical data storage has been presented.  相似文献   

6.
Semiconductor gas sensors are devices based on metallic oxides that operate at high temperatures for achieving good sensitivities to the gases of interest. Silicon micromachined structures are often used as platforms for obtaining both high temperatures and low-power consumption at the same time. In this paper, a microstructure based on the combination of micromachined silicon substrates and glass wafers is presented. The device incorporates an array of four different thin-film gas sensors that, depending on the design, can operate at the same or at different temperatures. The designs have been optimized by the finite element method (FEM) and the geometrical parameters of the structure have been selected in order to reduce the power consumption. The full process fabrication is presented. It is based on the combination of bulk micromachining, glass structuring, anodic bonding, and sensitive material deposition. Electrical, thermal, and mechanical tests have been done to demonstrate that the devices show high robustness and can reach high temperatures with low-power consumption.  相似文献   

7.
气体探测用低功耗微型加热器研究   总被引:1,自引:0,他引:1  
介绍了一种基于MEMS技术的可用于气体探测的低功耗微型加热器.通过结构优化和工艺参数控制实现了一种低功耗和高机械强度加热器的设计与制作.该加热器采用悬膜式结构,中心加热膜区通过4根细长的悬梁与衬底框架相连,铂电阻丝作为加热元件以折线的形式排列在中心膜区上,采用硅各向异性腐蚀液正面释放薄膜,并在薄膜下方形成倒金字塔型的隔热腔体.测试结果表明,加热器在400 C时功耗仅为26 mw,且加热器的升温响应时间小于5 ms,降温响应时间小于2 ms.  相似文献   

8.
In this paper, we present results of recent research from our laboratory directed toward a manufacturable SiC surface micromachining technology for microelectromechanical systems (MEMS) applications. These include the development of a low-pressure chemical vapor deposition and in situ doping processes for silicon carbide (SiC) films at relatively low temperatures, as well as the development of selective dry etching processes for SiC using nonmetallic masking materials. Doped polycrystalline SiC films are deposited at 800/spl deg/C by using a precursor 1,3-disilabutane and dopant gas NH/sub 3/, with the minimum resistivity of 26 m/spl Omega//spl middot/cm. Dry etching for SiC and its selectivity toward silicon dioxide and silicon nitride masking materials are investigated using SF/sub 6//O/sub 2/, HBr, and HBr/Cl/sub 2/ transformer coupled plasmas. The etch rate, etch selectivity, and etch profile are characterized and compared for each etch chemistry. By combining the LPCVD and dry etching process with conventional microfabrication technologies, a multiuser SiC MEMS process is developed.  相似文献   

9.
利用常规硅工艺的反应离子刻蚀、各向异性化学腐蚀、热氧化和超低压CVD生长技术,成功地硅单晶衬底上制作了硅/二氧化硅异质界面结构超精细硅量子线。本项研究结果对开展低维量子结构物理及硅量子器件的研究具有十分重要的意义。  相似文献   

10.
Nanopatterns on titanium may enhance endosseous implant biofunctionality. To enable biological studies to prove this hypothesis, we developed a scalable method of fabricating nanogrooved titanium substrates. We defined nanogrooves by nanoimprint lithography (NIL) and a subsequent pattern transfer to the surface of ASTM grade 2 bulk titanium applying a soft-mask for chlorine-based reactive ion etching (RIE). With respect to direct write lithographic techniques the method introduced here is fast and capable of delivering uniformly patterned areas of at least 4 cm(2). A dedicated silicon nanostamp process has been designed to generate the required thickness of the soft-mask for the NIL-RIE pattern transfer. Stamps with pitch sizes from 1000 nm down to 300 nm were fabricated using laser interference lithography (LIL) and deep cryogenic silicon RIE. Although silicon nanomachining was proven to produce smaller pitch sizes of 200 nm and 150 nm respectively, successful pattern transfer to titanium was only possible down to a pitch of 300 nm. Hence, the smallest nanogrooves have a width of 140 nm. An x-ray photoelectron spectroscopy study showed that only very few contaminations arise from the fabrication process and a cytotoxicity assay on the nanopatterned surfaces confirmed that the obtained nanogrooved titanium specimens are suitable for in vivo studies in implantology research.  相似文献   

11.
A nanocalorimetric suspended membrane sensor for pL volumes of aqueous media was fabricated by bulk silicon micromachining using anisotropic wet etching and photo and electron beam lithographic techniques. A high-temperature sensitivity of 125 /spl mu/K and a rapid unfiltered time constant of 12 ms have been achieved by integrating a miniaturized reaction vessel of 0.7-nL volume on a 800-nm-thick and 300/spl times/300- /spl mu/m/sup 2/-large silicon nitride membrane, thermally insulated from the surrounding bulk silicon. The combination of a ten-junction gold and nickel thermoelectric sensor with an integrated ultralow noise preamplifier has enabled the resolution of 15-nW power in a single measurement, a result confirmed by electrical calibration. The combination of a high sensitivity and rapid response time is a consequence of miniaturization. The choice of gold and nickel as sensor material provided the maximum thermal sensitivity in the context of ease of fabrication and cost. The nanocalorimetric sensor has the potential for integration in an ultralow-volume high-density array format for the characterization of processes in which there is an exchange of heat.  相似文献   

12.
提出并制作了转动竖直微镜的微机械光开关,采用曲线形状的电极设计,有效地减低了悬臂梁驱动器的吸合电压,采用体硅深刻蚀技术结合(110)硅的各向异性腐蚀技术制备了光开关芯片和耦合对准的U形槽和卡簧。芯片经初步封装后进行了电学测试和光学测试,测得吸合电压78.5V,谐振频率2.3kHz,光开关损耗5dB,隔离度45dB。  相似文献   

13.
This paper describes the fabrication of a micromachined miniaturized array of chambers in a 2-mm-thick single crystal (100) silicon substrate for the combinatorial screening of the conditions required for protein crystallization screening (including both temperature and the concentration of crystallization agent). The device was fabricated using standard photolithography techniques, reactive ion etching (RIE) and anisotropic silicon wet etching to produce an array of 10 x 10 microchambers, with each element having a volume of 5 microL. A custom-built temperature controller was used to drive two peltier elements in order to maintain a temperature gradient (between 12 and 40 degrees C) across the device. The performance of the microsystem was illustrated by studying the crystallization of a model protein, hen egg white lysozyme. The crystals obtained were studied using X-ray diffraction at room temperature and exhibited 1.78 A resolution. The problems of delivering a robust crystallization protocol, including issues of device fabrication, delivery of a reproducible temperature gradient, and overcoming evaporation are described.  相似文献   

14.
Burcham KE  Boyd JT 《Applied optics》1998,37(36):8397-8399
Freestanding, multimode optical channel waveguides formed by micromachining silicon are demonstrated. Fabrication utilizes standard microelectromechanical systems (MEMS) technology. Losses in the 0.57-0.80-dB/cm range are measured for channel waveguides with an air-silicon-air structure, whereas losses in the 1.12-1.52-dB/cm range are measured for channel waveguides with a SiO(2)-silicon-SiO(2) structure. Freestanding channel waveguides, along with optical fibers and other MEMS structures, can readily be mounted on a silicon MEMS platform to provide optimal alignment for maximizing optical coupling, and they are thus expected to be useful in devices that involve light and MEMS structures.  相似文献   

15.
The development of III-Nitride suspended structures for Micro-Electro Mechanical Systems (MEMS) and Nano-Electro Mechanical Systems (NEMS) is challenging due to lack of selective etching techniques. Recent efforts have focused on the removal of sacrificial layers based on material properties, such as crystalline quality, bandgap, polarity, doping, etc. These techniques require several processing steps in addition to precise control over the sacrificial and functional layer properties. In this work, conditions have been identified for the growth of etch-resistant polycrystalline AlN films via Metal Organic Vapor Phase Epitaxy (MOVPE) on silicon oxide surfaces, thus allowing silicon oxide to be used as a sacrificial layer in a surface micro-machining process. The MOVPE growth conditions reported result in a well oriented crystal with superior mechanical strength demonstrated by the fabrication of unsupported AlN structures with widths from 5 μm to 110 μm and air gaps ranging from 200 nm to 800 nm. This technique simplifies the fabrication process of AlN suspended structures and is well suited for achieving group III-Nitride heteroepitaxial MEMS/NEMS systems.  相似文献   

16.
Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated.  相似文献   

17.
立体微型器件的微制造技术及其在微机电系统(MEMS)的应用   总被引:6,自引:0,他引:6  
综述了近年来与微型机电系统(MEMS)相关的材料微制造和微加工技术的最新研究进展.重点介绍了如何利用硅晶片作为微型模具来制备压电陶瓷和热电材料的微型柱状阵列结构和反应烧结碳化硅微型转子等微制造技术,并展望了材料微制造技术在研制微型医疗器件和微型移动能源方面的应用前景.  相似文献   

18.
We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF(6), optimized for the formation of deep nanopores. We have realized structures with pitches between 440 and 750?nm, pore diameters between 310 and 515?nm, and depth to diameter aspect ratios up to 16. To the best of our knowledge, this is the highest aspect ratio ever reported for arrays of nanopores in silicon made with a reactive ion etching process. Our experimental results show that the etching rate of the nanopores is aspect-ratio-dependent, and is mostly influenced by the angular distribution of the etching ions. Furthermore we show both experimentally and theoretically that, for sub-micrometer structures, reducing the sidewall erosion is the best way to maximize the aspect ratio of the pores. Our structures have potential applications in chemical sensors, in the control of liquid wetting of surfaces, and as capacitors in high-frequency electronics. We demonstrate by means of optical reflectivity that our high-quality structures are very well suited as photonic crystals. Since the process studied is compatible with existing CMOS semiconductor fabrication, it allows for the incorporation of the etched arrays in silicon chips.  相似文献   

19.
A microtechnology allowing the integration of thin metal electrodes and three dimensional highly doped bulk silicon electrodes on a hybrid PDMS/glass fluidic microchip has been developed. The fabrication involved anodic bonding of a silicon wafer onto glass substrate, deep reactive ion etching of 3-D bulk silicon electrodes, and plasma bonding of a PDMS microfluidic structure on a silicon/gold/glass substrate. The devices realized using this technology have been used for electrical impedance characterization of chemical and biological material. Microdevices with typical dimensions of hundreds of micrometers have been fabricated and tested in the determination of the conductivity of NaCl solutions. Smaller sensors, with critical dimensions under 10 m, have been achieved for single-cell characterization. Human hepatocellular liver carcinoma cells have been introduced in the microimpedance sensors. Measurements show the interfacial relaxation of the cellular membrane in the range. It is expected that other electrochemical sensors and electrokinetic actuators can benefit from this technology.  相似文献   

20.
Bradbury-Nielsen gates (BNGs) are a standard way for gating or steering beams of charged particles in ion mobility spectrometry and time-of-flight mass spectrometry. They consist of a pair of interleaved electrodes that when at the same potential allow ions to pass through the electrodes undeflected and, when a voltage is applied, cause the ions to be deflected from their propagation axis. Previous efforts to construct such devices have relied on mechanical assembly by winding wires across an aperture. We describe a micromachining method for making monolithic BNGs using deep reactive ion etching of silicon-on-insulator wafers. This method enables the creation of electrodes with spacings ranging from 25 to 100 microm with a thickness of 20 microm, covering a 5 mm by 5 mm active area. We characterize the performance of these micromachined BNGs by ion imaging in a pseudorandom time-of-flight mass spectrometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号