首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prafulla D. Patil 《Fuel》2009,88(7):1302-1306
The non-edible vegetable oils such as Jatropha curcas and Pongamia glabra (karanja) and edible oils such as corn and canola were found to be good viable sources for producing biodiesel. Biodiesel production from different edible and non-edible vegetable oils was compared in order to optimize the biodiesel production process. The analysis of different oil properties, fuel properties and process parameter optimization of non-edible and edible vegetable oils were investigated in detail. A two-step and single-step transesterification process was used to produce biodiesel from high free fatty acid (FFA) non-edible oils and edible vegetable oils, respectively. This process gives yields of about 90-95% for J. curcas, 80-85% for P. glabra, 80-95% for canola, and 85-96% for corn using potassium hydroxide (KOH) as a catalyst. The fuel properties of biodiesel produced were compared with ASTM standards for biodiesel.  相似文献   

2.
P.K. Sahoo 《Fuel》2009,88(9):1588-1594
Petroleum sourced fuels is now widely known as non-renewable due to fossil fuel depletion and environmental degradation. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Biodiesel derived from oil crops is a potential renewable and carbon neutral alternative to petroleum fuels. Chemically, biodiesel is monoalkyl esters of long chain fatty acids derived from renewable feed stock like vegetable oils and animal fats. It is produced by transesterification in which, oil or fat is reacted with a monohydric alcohol in presence of a catalyst. The process of transesterification is affected by the mode of reaction condition, molar ratio of alcohol to oil, type of alcohol, type and amount of catalysts, reaction time and temperature and purity of reactants. In the present paper various methods of preparation of biodiesel from non-edible filtered Jatropha (Jatropha curcas), Karanja (Pongamia pinnata) and Polanga (Calophyllum inophyllum) oil have been described. Mono esters (biodiesel) produced and blended with diesel were evaluated. The technical tools and processes for monitoring the transesterification reactions like TLC, GC and HPLC have also been used.  相似文献   

3.
This study investigates supercritical carbon dioxide (SC-CO2) extraction of triglycerides from powdered Jatropha curcas kernels followed by subcritical hydrolysis and supercritical methylation of the extracted SC-CO2 oil to obtain a 98.5% purity level of biodiesel. Effects of the reaction temperature, the reaction time and the solvent to feed ratio on free fatty acids in the hydrolyzed oil and fatty acid esters in the methylated oil via two experimental designs were also examined. Supercritical methylation of the hydrolyzed oil following subcritical hydrolysis of the SC-CO2 extract yielded a methylation reaction conversion of 99%. The activation energy of hydrolysis and trans-esterified reactions were 68.5 and 45.2 kJ/mole, respectively. This study demonstrates that supercritical methylation preceded by subcritical hydrolysis of the SC-CO2 oil is a feasible two-step process in producing biodiesel from powdered Jatropha kernels.  相似文献   

4.
A continuous process for biodiesel production in supercritical carbon dioxide was implemented. In the transesterification of virgin sunflower oil with methanol, Lipozyme TL IM led to fatty acid methyl esters yields (FAME) that exceeded 98% at 20 MPa and 40 °C, for a residence time of 20 s and an oil to methanol molar ratio of 1:24. Even for moderate reaction conversions, a fractionation stage based on two separators afforded FAME with >96% purity. Lipozyme TL IM was less efficient with waste cooking sunflower oil. In this case, a combination of Lipozyme TL IM and Novozym 435 afforded FAME yields nearing 99%.  相似文献   

5.
This study investigated experimental equilibrium solubilities of Jatropha curcas and Aquiliaria crassna oils dissolved in supercritical carbon dioxide at temperatures of 318-338 K and pressures of 20, 25, 30, 35 MPa. The highest solubility of J. curcas and A. crassna oil were 29.8 and 28.4 mg L−1, respectively, at 338 K and 35 MPa. The oil solubilities and the concentration of triglycerides both increased with increasing temperature and pressure. Triglyceride molecules surrounded by carbon dioxide molecules may be proposed since solubilities increased with the flux of supercritical carbon dioxide. The solubility of these two oils linearly increased with the density of supercritical carbon dioxide. Experimental data of the oil solubility were successfully correlated by the Chrastil equation.  相似文献   

6.
Mahesh N. Varma 《Fuel》2010,89(7):1641-31
Biodiesel was synthesized in supercritical fluids by two routes: non-catalytically in supercritical alcohols and by enzyme catalysis in supercritical carbon dioxide. Two oils, sesame oil and mustard oil, and two alcohols, methanol and ethanol, were used for the synthesis. Complete conversion was observed for synthesis in supercritical alcohols whereas only a maximum of 70% conversion was observed for the enzymatic synthesis in supercritical carbon dioxide. For the synthesis in supercritical alcohols, the activation energies and pseudo-first order rate constants were determined. For the reactions in supercritical carbon dioxide, a mechanism based on ping pong bi-bi was proposed and the kinetic parameters were determined.  相似文献   

7.
The use of methyl acetate instead of methanol for supercritical synthesis of glycerol-free biodiesel from vegetable oils is a new process and its study is very limited in the literature. In this work, it has been tested for the first time on three edible and non-edible oils with different fatty acid composition. The process was also applied to waste oil with higher free fatty acid (FFA) content. The results demonstrate that the oil composition does not significantly influence the biodiesel yield.The influence of temperature, pressure and molar ratio of reactants was studied. All the oils achieved complete conversion after 50 min at 345 °C, 20 MPa with methyl acetate:oil molar ratio equal to 42:1. The obtained data also allowed calculating the apparent rate coefficients and activation energies.Eventually, some new information on the process was obtained. Thermal degradation of triacetin, which substitutes glycerol as the by-product of the transesterification reaction, was observed. Some indicative experiments were performed to understand the role of the acetic acid produced by FFA esterification.  相似文献   

8.
Production of biodiesel from rice bran and karanja oils was studied in a stirred tank reactor at different agitator speeds. The reaction system involves two immiscible phases: oil and methanol. The minimum critical speed and the emulsion properties for the reacting system were measured. Based on these values the sauter mean diameter, interfacial area and flow regime were obtained. The minimum critical speed of agitator for rice bran was 700-750 rpm and for karanja was 550-650 rpm. The lower rpm for karanja oil is due to the presence of gums in the non-edible oils. The flow regime for the non-reacting system was found to be transitional and turbulent for reacting. The sauter mean diameter decreased to 7-8 times, from 2010 to 240 μm with increased agitator speed in the initial stages of the reaction and then was found to be constant with further increase. The specific interfacial area obtained from sauter mean diameter showed an increase accordingly. The economics of the biodiesel process depends on the conversions which also dictate the yield. The characteristics determined in the present work are useful in understanding the biodiesel process and help in the scale up of the reactor using different feed-stocks.  相似文献   

9.
The excellent suitability of immobilized Candida antarctica lipase B (Novozym 435) catalyst to carry out the synthesis of methyl oleate (biodiesel) by methanolysis of triolein in ILs based on imidazolium cations with large alkyl side chain (from C12 to C18) has been demonstrated at 60 and 85 °C. The phase behaviour of IL/triolein/methanol and IL/methyl oleate mixtures were studied at different concentrations and temperatures, the best results (up to 98.6% biodiesel yield after 6 h) being obtained for ILs able to provide monophasic reaction systems, i.e. 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide). A continuous enzymatic reactor, based on biocatalysts particles coated with hydrophobic ILs, for biodiesel synthesis in supercritical carbon dioxide was studied at 60 °C and 180 bar. The operational stability of the immobilized lipase was improved by its coating with ILs, i.e. 1-methyl-3-octadecylimidazolium hexafluorophosphate, leading to a two-phase systems with respect to the biodiesel product, which showed an excellent catalytic behaviour in continuous operation under supercritical conditions (up to 82% biodiesel yield after 12 cycles of 4 h).  相似文献   

10.
A high quality biodiesel was produced from Mexican Jatropha curcas crude oil (JCCO) by a two step catalyzed process. The free fatty acids (FFA) were first esterified with methanol, catalyzed by a solid catalyst: SiO2 pretreated with HF. The catalyst showed a high number of Lewis acid surface sites, and no CO2 or H2O adsorption activity. This catalyst showed a high FFA esterification activity and high stability. After 30 esterification runs, the catalyst activity remained unchanged. During the second step, the triglycerides present in the JCCO were transesterified with methanol catalyzed by NaOH. The chromatographic analysis of the biodiesel obtained, revealed that the process proposed in this investigation led to a very high quality biodiesel, meeting the international requirements for its utilization as a fuel. The combustion gas emissions of the JCCO biodiesel were studied by FTIR spectroscopy using a laboratory combustor. These preliminary results showed low amounts of aromatic and sulfur containing compounds. However, halogenated compounds and dicyclopentadiene were also detected at the combustor exhaust.  相似文献   

11.
A small scale biodiesel production facility based on the Mcgyan process is simulated in HYSYS and a follow-up techno-economic analysis is performed. Two feedstocks are analyzed: a soybean oil and waste cooking oil analogs. It is found that the soybean oil based process is not economical at such small scales, whereas the waste oil case has an NPV of $618K with an internal rate of return of 80%. The economic feasibility of a distributed system of small scale biodiesel production facilities in Greater London using waste vegetable cooking feedstock is also investigated. It is found that this system is feasible with a total of 20 installed facilities and an NPV of $1.1MM. A scheme is then implemented which reduces the total capital expenditure per facility based on the mass production of similar facilities. As expected, this scheme reduces the total capital cost of the system. Finally, a Monte Carlo scheme is implemented to study how the variability in economic parameters affects the system. It is found that the system is most sensitive to the sale price of biodiesel but that in all cases a positive NPV is returned. These analyses support the feasibility of small scale locally based biofuel production from locally sourced feestocks.  相似文献   

12.
Interfacial properties essentially influence fluid‐liquid separation processes. Thereby, interfacial tension is an important parameter that is associated with mass transfer and mutual solubility of participating compounds. For this reason, interfacial tension of a virgin olive oil with a known amount of free fatty acids was measured in supercritical carbon dioxide atmosphere at 313 K and 353 K and pressures up to 40 MPa. The obtained values were compared to different oils some of which contain appreciable amounts of volatile components. In general, interfacial tension behaviour is dominated by the effect of pressure, whereas differences between oil compositions are secondary. Besides mutual solubility interfacial tension is supposed to be associated with the compressibility of the dense fluid phase. For predicting mass transfer area some general comments on the colloidal behaviour of systems containing supercritical CO2 are made  相似文献   

13.
Synthesis of PCL/clay masterbatches in supercritical carbon dioxide   总被引:1,自引:0,他引:1  
Pre-exfoliated nanoclays were prepared through a masterbatch process using supercritical carbon dioxide as solvent and poly(?-caprolactone) as organic matrix. In situ polymerization of ?-caprolactone in the presence of large amount of clay was conducted to obtain these easily dispersible nanoclays, collected as a dry and fine powder after reaction. Dispersion of these pre-exfoliated nanoclays in chlorinated polyethylene was also investigated. All the results confirm the specific advantages of supercritical CO2 towards conventional solvents for filler modification.  相似文献   

14.
A series of Mg–Zr catalysts with varying Mg to Zr ratios was prepared by co-precipitation method. These catalysts were characterized by BET surface area, X-ray diffraction, X-ray photo electron spectroscopy and temperature programmed desorption of CO2. The catalytic activity of these catalysts was evaluated for the room temperature transesterification of both edible and non-edible oils to their corresponding fatty acid methyl esters. The catalyst with Mg/Zr (2:1 wt./wt.%) exhibited exceptional activity towards transesterification reaction within short reaction time. The effects of different reaction parameters such as catalyst to oil mass ratio, reaction temperature, reaction time and methanol to oil molar ratio were studied to optimize the reaction conditions. The reasons for the observed activity of these catalysts are discussed in terms of their basicity and other physico-chemical properties.  相似文献   

15.
A simple continuous process was designed for the transesterification of Jatropha curcas (J. curcas) oil to alkyl esters using microwave-assisted method. The product with purity above 96.5% of alkyl ester is called the biodiesel fuel. Using response surface methodology, a series of experiments with three reaction factors at three levels were carried out to investigate the transesterification reaction in a microwave and conversion of alkyl ester from J. curcas oil with NaOH as the catalyst. The results showed that the ratio of methanol to oil, amount of catalyst and flow rate have significant effects on the transesterification and conversion of alkyl ester. Based on the response surface methodology using the selected operating conditions, the optimal ratio of methanol to oil, amount of catalyst and flow rate of transesterification process were 10.74, 1.26 wt% and 1.62 mL/min, respectively. The largest predicted and experimental conversions of alkyl esters (biodiesel) under the optimal conditions are 99.63% and 99.36%, respectively. Our findings confirmed the successful development of a two-step process for the transesterification reaction of Jatropha oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.  相似文献   

16.
17.
The solubility of three disperse anthraquinone dyes and two azo dyes in supercritical CO2 was measured. The tested dyes are Celliton fast blue B, l-amino-2-methylanthraquinone, 1-methylaminoanthraquinone, disperse Red 1 and 4-[4-(phynylazo)phenylazo]-o-cresol. Solubility measurements were made at 313.15-393.15 K and 10-25 MPa in a high-temperature autoclave phase equilibrium apparatus. Pure physical properties of the dyes such as critical constants, molar volumes and vapor pressures were estimated based on semi-empirical methods. Also, the data were quantitatively modeled by both an empirical density correlation and a quantitative equation of state recently proposed by the present authors based on nonrandom lattice theory. We found that anthraquinone disperse dyes in general show higher solubility than azo disperse dyes in supercritical CO2 within the experimental ranges.  相似文献   

18.
Characterization and supercritical carbon dioxide extraction of walnut oil   总被引:9,自引:0,他引:9  
Walnut (Juglans regia L.) oil was extracted with compressed carbon dioxide (CO2) in the temperature range of 308 to 321 K and in the pressure range of 18 to 23.4 MPa. The influence of particle size was also studied at a superficial velocity of 0.068 cm/s, within a tubular extractor of 0.2 L capacity (cross-sectional area of 16.4 cm2). FFA, sterol, TAG, and tocopherol compositions were not different from those of oil obtained with n-hexane. The main FA was linoleic acid (56.5%), followed by oleic acid (21.2%) and linolenic acid (13.2%). The main TAG was LLL (linoleic, linoleic, linoleic) (24.4%), followed by OLL (oleic, linoleic, linoleic) (19.6%) and LLLn (linoleic, linoleic, linolenic) (18.4%). The main component of sterols was β-sitosterol (85.16%), followed by campesterol (5.06%). The amount of cholesterol was low (0.31 and 0.16% for oils extracted by n-hexane and supercritical fluid extraction, respectively. The CO2-extracted oil presented a larger amount of tocopherols (405.7 μg/g oil) when compared with 303.2 μg/g oil obtained with n-hexane. Oxidative stability determined by PV and the Rancimat method revealed that walnut oil was readily oxidized. Oil extracted by supercritical CO2 was clearer than that extracted by n-hexane, showing some refining. A central composite, nonfactorial design was used to optimize the extraction conditions using the software Statistica, Version 5. The best results were found at 22 MPa, 308 K, and particle diameter (Dp) −0.1 mm.  相似文献   

19.
A new transparent microscale circulation-type high pressure equilibrium cell with on-line sampling was devised. With this apparatus, experimental solubility of molecularly complex species such as steroids (cholesterol, stigmasterol and ergosterol) and fatty acids (palmitic acid and stearic acid) in supercritical carbon dioxide(sc-C02) were measured. Also, to find an appropriate substance for enhancing both the polarity and the solubility power of the SC-CO2 solvent, we arbitrarily selected three polar substances such as acetone, methanol and water and the effect of these cosolvents on the solubility of solutes in SC-CO2 are examined. The supercritical phase equilibrium data of solute-cosolvent-sc-CO2 systems were quantitatively correlated using a new equation of state based on the lattice fluid theory incorporated with the concept of multibody interaction. We found that the addition of tracer amount of acetone or methanol to SC-CO2 enhances the solubility of all solutes about thirty to sixty times when compared with the case of pure sc-CO2 However, for the case of cosolvent water, no further enhancement of the solubility of solutes was realized. Also, the versatile fittability of the equation of state proposed in this work was demonstrated with the newly measured ternary supercritical equilibrium data.  相似文献   

20.
Liqin Cao  Xiaojuan Chen  Lihua Zuo  Zhiwei Li 《Polymer》2006,47(13):4588-4595
Herein we report a new and simple method that has been developed to prepare smart polymeric microgels consisting of temperature-sensitive cores with pH-sensitive shells. The microgels were obtained directly from one step seed polymerization of N-isopropylacrylamide and N,N-methylenebisacrylamide from water-soluble biopolymers containing carboxymethyl groups in supercritical carbon dioxide. The effect of initial concentration of initiator, crosslinker, and carboxymethyl starch (CMS) dose as well as reaction pressures on the yield and morphology of the resulting polymer were investigated. CMS and crosslinker worked effectively as surfactant to some extent. PNIPAM/CMS particles with diameters in 100 nm and narrow particle size distribution were produced in supercritical carbon dioxide, in high yield and in short reaction times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号