共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
5.
笔者讨论了洛阳石化工程公司设计的小型同轴催化裂化装置Φ800气控式外循环管型外取热器在盐城市石油液化气厂重油催化裂化装置上的工业试验,结果表明该型式外取热器有着广泛的工业应用前景。 相似文献
6.
7.
介绍了近年来催化裂化再生器和再生工艺的研究现状。再生工艺主要包括单段再生、两段再生和快速流化床再生;比较了各类再生器的优缺点。简述了3种再生器的改进历程,根据现有再生器的优缺点提出了新的开发思路。 相似文献
8.
2017年11月装置停工检修期间,二催化装置对外取热进行了改造,增加了小流化风环,目的是改善取热器循环流化不好、汽难以调节的情况。开车后运行近一年,外取热器运行平稳。2018年11月4日,外取热器筒体下部出现穿孔泄漏现象,立即采取对泄漏点进行包盒子处理。从外取热器取热原理入手对泄漏原因进行了分析,提出了应对措施,防止漏点进一步扩大,造成生产波动。 相似文献
10.
催化裂化装置再生器检验 总被引:1,自引:0,他引:1
针对催化裂化装置的T-102再生器发生局部超温现象提出了具体的检验方法和检验重点.检验结果安全状况等级定为4级,监控使用.在监控使用过程中,必须密切监控简体壁温,严禁再次发生超温现象,这对确保再生器的安全运行具有重要意义. 相似文献
11.
12.
在汽油催化反应动力学模型和气固两相流动模型的基础上,建立了汽油改质反应过程流动-反应耦合模型。针对不同的转化反应器构型(提升管、提升管-床层反应器),对汽油改质过程进行了数值模拟。模拟结果表明,对提升管反应器而言,汽油经过低温改质反应后,烯烃含量可以从35.1%降低到18%左右,烯烃降低幅度可达48%,汽油中烯烃主要转化为异构烷烃。另外,随着反应温度的升高,汽油转化反应中的裂化反应增强,导致汽油收率下降。对于提升管-床层反应器而言,汽油中的烯烃含量可以降得更低,在床层空速4时,烯烃含量可以降低到5%左右,汽油收率为80%左右。 相似文献
13.
针对350万t/a重油催化裂化装置出现的干气不干现象,经过一系列的分析,确定由于MIP工艺产生的催化柴油密度过大,使得再吸收塔内液相流动性差,造成再吸收塔压降大、雾沫夹带严重,干气带液严重影响下游装置运行。根据相似相溶原理,进行了采用顶循环油作为再吸收塔吸收剂的改造。投用结果表明,此项改造彻底解决了干气不干的现象,提高了液化气及汽油的收率,直接经济效益可达9 000多万元/a。 相似文献
14.
在冷模实验装置上,系统地考察了SSQS系统(超短快分系统)的气相流场和在系统中的分离性能.在此基础上,根据SSQS系统气固分离的分离原理,建立了计算SSQS系统分离效率的横混模型.该模型同时考虑了惯性分离和排气管结构对颗粒捕集的作用,通过最终的修正,该模型所预测的结果和实验结果吻合较好.模型计算结果表明:在最优尺寸比例下,分离效率的主要影响因素为分离器外壳与中心排气管的半径差以及颗粒的切向速度. 相似文献
15.
炼油厂中流化催化裂化(FCC)装置催化剂跑损的故障原因分析多数来自现场工程师,在故障机理方面少有报道。为了解决这一问题,本文利用故障树分析方法(FTA),研究FCC装置催化剂跑损机制。采用催化剂跑损为顶事件,结合跑损途径和跑损机理,确定FCC装置故障、操作工艺异常和催化剂颗粒物性3个因素作为中间事件,并通过逐层向下深入分析,确定诸如翼阀磨损等21个因素作为底事件,建立催化剂跑损故障树模型。根据FCC装置故障树风险分析,得到任何一个底事件出现都有可能导致顶事件发生,且对FCC装置催化剂跑损的贡献度相同。研究结果表明:利用FTA方法可以更深层次了解装置跑剂原因,对考察FCC装置催化剂跑损机理具有指导意义,并提出了相应的故障判定流程和跑剂预防措施。 相似文献
16.
17.
Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot be executed in practice some time for no corresponding operating conditions. In order to determine a practi- cally feasible optimal plan and corresponding operating conditions of fluidized catalytic cracking unit (FCCU), a novel close-loop integrated strategy, including determination of a quasi-optimal plan, search of operating conditions of FCCU and revision of the production planning model, was proposed in this article. In the strategy, a generalized genetic algorithm (GA) coupled with a sequential process simulator of FCCU was applied to search operating conditions implementing the quasi-optimal plan of FCCU and output the optimal individual in the GA search as a final genetic individual. When no corresponding operating conditions were found, the final genetic individual based correction (FGIC) method was presented to revise the production planning model, and then a new quasi-optimal production plan was determined. The above steps were repeated until a practically feasible optimal plan and corresponding operating conditions of FCCU were obtained. The close-loop integrated strategy was validated by two cases, and it was indicated that the strategy was efficient in determining a practically executed optimal plan and corresponding operating conditions of FCCU. 相似文献
18.
19.
20.
Eduardo F Villafuerte‐Macías Ricardo Aguilar Rafael Maya‐Yescas 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2004,79(10):1113-1118
Although one important by‐product of fluidised‐bed catalytic cracking of hydrocarbons is the sour gas (mainly hydrogen sulfide), there are no kinetic models to predict its generation. Moreover, if feedstock sulfur is not directed to sour gas, it will be present in gasoline, cycle oils and coke. These products are used as fuels, which could emit sulfur oxides during their combustion. In order to be able to model production of clean fuels, a kinetic scheme that considers sour gas as unmatched product was developed; meanwhile, the sulfur distribution in cracking products is predicted. Model parameters are validated using industrial operating data. This kinetic scheme is employed to model steady state operation of an industrial catalytic cracking riser and to find operating conditions that diminish the sulfur content in fuels. Copyright © 2004 Society of Chemical Industry 相似文献