首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
文章通过对我国海洋油气开发生产历史的梳理,指出我国近海盆地油气产量增长的巨大基础在于油气新领域的一次次突破。同时,在总结我国海洋油气资源开发现状的基础上,对当前我国海洋油气资源新领域突破前景及方向进行了探讨。  相似文献   

2.
由于天然气水合物的特性及海底天然气水合物地层地质环境的复杂性,在海洋天然气水合物地层进行钻井作业时会面临诸多的安全问题。目前科研工作者主要通过实地钻井项目、实验研究及数值模拟的方式对海洋天然气水合物地层钻井安全问题展开研究。本文基于对国内外海洋天然气水合物钻井安全问题研究的广泛调研,针对海洋天然气水合物地层钻井面临的主要安全问题及其最新的研究进展进行了讨论和总结。同时,分析了海洋天然气水合物地层钻井安全问题研究目前存在的问题以及未来研究的重点方向。  相似文献   

3.
10月16日,国务院集中公布了对天津、河北、辽宁、江苏、浙江、福建、山东、广西八省份海洋功能区划(2011~2020年)的批复。从各省份获批的区划中可以看出,能源矿产资源成为海洋开发的重点,海洋油气开采及与海洋资源联系紧密  相似文献   

4.
应大力重视天然气水合物的研究与试验开发工作   总被引:2,自引:0,他引:2  
天然气水合物是近年来才引起世界各国广泛注意的一种新型能源。由于这种资源在全球分布极广,而且数量巨大,已被科技界列为常规油气资源的可替代性资源。因其绝大部分出现于海洋中,给研究与开采工作带来很大的困难,然而,一些工业发达国家率先开始了这方面的探索工作。本文依据国外有关资料,对目前世界上天然气水合物研究工作的现状与进展进行了揭示和分析,并阐述了开展本项目的重要性。  相似文献   

5.
天然气水合物是一种潜在的洁净能源资源,我国南海有丰富的储量,被认为是后石油时代的重要战略资源之一,然而目前大部分的海洋天然气水合物开采都受到出砂影响。针对深水天然气水合物开采过程中易出砂的现象,通过前期的出砂实验、理论和数值模拟,提出了海洋天然气水合物开采过程中固相(砂和水合物)控制方案。总结了天然气水合物开采过程中出砂特性和防砂案例,提出大颗粒水合物对泥质粉砂具有挡砂作用,进而影响防砂设计精度。据此,根据开发角度的天然气水合物藏6类细分,提出了考虑水合物颗粒本身及其分解作用的固相控制方法。结合南海天然气水合物储层公开资料,设计出相应的固相控制精度,以期最终形成出砂/防砂/井筒携砂/水合物二次生成预防为一体的固相控制体系,为南海天然气水合物安全高效地商业开发提供参考。  相似文献   

6.
受传统化石能源日趋枯竭和环境污染的影响,海洋能作为一种清洁可再生能源得到了广泛关注。海洋温差能作为海洋能的重要组成部分,其储量和可转化电能巨大,且发电波动小、能量密度高,积极开发海洋温差能资源对实现科技兴海战略具有重要意义。海洋温差热力循环是海洋温差能开发利用的关键技术,其循环效率的高低直接决定了海洋温差发电系统的技术和经济性。本文综述了海洋温差能发电热力循环技术研究现状,对其基本原理及形式、热力循环构架、循环工质和热力学分析方法进行了详细阐述,并对海洋温差能发电热力循环技术进行了深入分析和展望。  相似文献   

7.
2020年第二次南海水合物试采证明水平井是实现产业化的重要途径,计划在2030年南海天然气水合物商业开发中补齐粤港澳大湾区天然气供给的短板。但我国海洋水合物甜点多赋存在高含水、边底水丰富的非成岩泥质粉砂储层,水平井开发过程中储层水(排液)易携泥砂(出砂)脊进突入井筒导致产量降低,水平井控水控砂完井是产业化的瓶颈问题之一。针对第二次水平井开发水合物出现的新问题,分析了海洋天然气水合物储层开发过程中的水平井非均衡排液出砂情况,总结了国内外水平井控水控砂实验、模拟和现场的进展,提出了水平井开采水合物控水控砂的难点及我国面临的挑战。分析结果表明,天然气水合物储层开发的水平井控水控砂与常规油气开发存在共性问题,也有其自身分解特点及其赋存的非成岩储层有关的特性问题。针对我国海域天然气水合物储层间各向异性明显、潜在的“四气合采”和“碳封存”,对水合物水平井控水控砂抽取和注入提出了具体的研究思路及建议,以期推动海洋天然气水合物产业化开发进程。  相似文献   

8.
由中国地质大学(北京)与广州海洋地质调查局联合共建的“海洋天然气水合物勘探开发技术研究中心”2009年底在北京揭牌。中国地质大学依托其在地球科学领域的优势,形成了以海洋地质为特色的学科和研究平台。  相似文献   

9.
海洋油气开发海洋油气开发是1个迅速发展的产业,其产值已占世界海洋经济的60%。特别是当前的海上油气开发已经向深海延伸,更需要高技术作为支撑:a)油气勘探技术;b)深水海面采油技术;  相似文献   

10.
天然气水合物是天然气(主要成分甲烷)和水在极地、高原冻土带环境和深水地层内的高压、低温环境中形成的一种类似"冰笼"状的固体化合物,属于一种具有替代传统燃料的巨大资源潜力的新型、高效清洁能源。目前已形成了降压法、热激发法、CO_2置换法等一系列天然气水合物开发技术,但出于技术性或经济性考虑,单独使用某一开发技术难以实现对天然气水合物的持续、稳定、经济开发。提出了天然气水合物新型联动开发系统,以降压法为基础,充分利用热电厂的高温流体和分布式热源进行热激发,同时将电厂捕集的CO_2注入海底,采用"降压-热激发-CO_2置换"联合法,提高海底天然气水合物的开采效率。新型联动开发系统主要实现热量循环系统、CO_2-CH_4碳循环系统和流体循环系统等三大循环系统。可行性分析结果表明,由于电厂余热提供的热能满足注热功率的最低要求,并且注入的CO_2可进一步提高CH_4产气率,因此新型联动开发系统在技术上可行;由于采用充分利用电厂余热的热流体激发法,因此新型联动开发系统在经济上可行;由于可促进电厂对CO_2的捕集,并利用CO_2取代CH_4水合物的自发转化优势将CO_2稳定封存于海底,相当于实现了电厂碳的"零排放",因此新型联动开发系统在环保方面也具有可行性。  相似文献   

11.
Over the past 2 years, the vulnerability of offshore production in the Gulf of Mexico (GOM) has been brought to light by extensive damage to oil and gas facilities and pipelines resulting from Hurricanes Ivan, Katrina, and Rita. The occurrences of extreme weather regularly force operators to shut-down production, cease drilling and construction activities, and evacuate personnel. Loop currents and eddies can also impact offshore operations and delay installation and drilling activities and reduce the effectiveness of oil spill response strategies. The purpose of this paper is to describe how weather and ocean forecasting impact production activities and pollution management in the GOM. Physical outcome and decision models in support of production and development activities and oil spill response management are presented, and the expected economic benefits that may result from the implementation of an integrated ocean observation network in the region are summarized. Improved ocean observation systems are expected to reduce the uncertainty of forecasting and to enhance the value of ocean/weather information throughout the Gulf region. The source of benefits and the size of activity from which improved ocean observation benefits may be derived are estimated for energy development and production activities and oil spill response management.  相似文献   

12.
The discussion and debate about climate change and oil and gas resource development has generally focused on how fossil fuel use affects the Earth's climate. This paper explores how the changing climate is likely to affect oil and gas operations in low-lying coastal areas and the outer continental shelf. Oil and gas production in these regions comprises a large sector of the economies of many energy producing nations. Six key climate change drivers in coastal and marine regions are characterized with respect to oil and gas development: changes in carbon dioxide levels and ocean acidity, air and water temperature, precipitation patterns, the rate of sea level rise, storm intensity, and wave regime. These key drivers have the potential to independently and cumulatively affect coastal and offshore oil and gas exploration, production, and transportation, and several impacts of climate change have already been observed in North America.  相似文献   

13.
This is a study of world energy resource sustainability within the context of resource peak production dates, advanced energy use technologies in the transportation and electricity generation energy use sectors, and alternative fuel production including hydrogen. The finding causing the most concern is the projection of a peak in global conventional oil production between now and 2023. In addition, the findings indicate that the peak production date for natural gas, coal, and uranium could occur by 2050. The central question is whether oil production from non-conventional oil resources can be increased at a fast enough rate to offset declines in conventional oil production. The development of non-conventional oil production raises concerns about increased energy use, greenhouse gas emissions, and water issues. Due to the emerging fossil fuel resource constraints in coming decades, this study concludes that it is prudent to begin the development of hydrogen production and distribution systems in the near-term. The hydrogen gas is to be initially used by fuel cell vehicles, which will eliminate tailpipe greenhouse gas emissions. With a lowering of H2 production costs through the amortization of system components, H2 can be an economic fuel source for electricity generation post-2040.  相似文献   

14.
Chemical storage of electric energy is recognised as a potential solution to improve the penetration of renewable energy. The coupling of renewable power production with offshore oil & gas exploitation by converting electricity into synthetic fuels represents an opportunity to valorize renewables in remote areas in an energy transition panorama. The present study aims at a comparison of alternative power-to-gas and power-to-liquid strategies for the conversion of offshore wind power into different chemical energy vectors (hydrogen, synthetic natural gas and methanol), taking advantage of conventional offshore oil & gas infrastructures for energy conversion and synthetic fuel transportation. A set of technical, economic, environmental and profitability performance indicators was defined to allow the comparison. A case study in the North Sea was analysed. The results showed that electrolyzers capacity and offshore-onshore distance play an important role on economic indicators. Sensitivity analysis was carried out to test the robustness of the results.  相似文献   

15.
The oceans represent a huge energy reservoir. Although today all of the marine power projects are very near from the shore and they are rated at low power, the huge potential of the seas may in a not very distant future bring marine power further into the sea. Also offshore oil and gas exploration is moving into deeper waters and at longer distances from land. New carbon sequestration projects under the seabed are on the way which require a vast amount of electric power consumption. The substitution of offshore power generators by power provided from the grid may have environmental benefits, but the deployment of offshore transmission of bulk electrical power to or from offshore platforms to the electrical grid onshore is a mayor challenge. The main objective of this paper is to focus on trends that can lead to a feasible transmission system in offshore energy systems far from land, and to introduce the technological alternatives which could help to reach that goal. The paper describes the main alternatives and the technical and economical aspects of the transmission of electrical power offshore.  相似文献   

16.
The technical and economic properties of new storage devices for electric energy such as batteries, hydrogen storage systems, flywheels, steam storage plants and compressed air storage facilities are compared with conventional peak power plants such as gas turbines and hydroelectric storage systems. The analysis shows that batteries, steam storage plants and compressed air storage facilities may be economically competitive with conventional peak power devices. Batteries are especially appropriate for dispersed energy storage systems.Utilization of storage devices instead of gas turbines results in substitution of oil or natural gas by coal or nuclear fuel.  相似文献   

17.
The development of renewable energy as a major component of efforts to combat climate change serves as the impetus for the location of energy production facilities in coastal ocean space. Yet, while many coastal nations see offshore renewable energy development as an important way forward, the speed and manner in which these efforts take shape vary dramatically. This paper assesses the role of coastal nations’ domestic legal and policy frameworks in the siting of offshore renewable energy facilities in areas under federal jurisdiction. It focuses on two nations—Germany and the United States. Both have articulated their interest in renewable offshore energy, but while Germany has approved many offshore sites, recent US proposals have for the most part stalled. Based on a review of legal and policy documents, laws and regulations, academic literature, and interviews, this research identifies and compares factors that figure most prominently for the development of offshore renewable energy policies. Comparisons are organized under four categories: the regulatory framework, the public's role in siting, targeted economic mechanisms, and indirect mechanisms. The paper concludes with observations about prominent supports and impediments and suggestions for further research.  相似文献   

18.
全球深水油气资源勘探开发现状及面临的挑战   总被引:2,自引:0,他引:2  
王震  陈船英  赵林 《中外能源》2010,15(1):46-49
全球海洋油气资源非常丰富,其中大陆架占据主要部分,约为60%左右;深水、超深水的资源量也不容小觑,约占全部海洋资源量的30%。但分布十分不均,主要分布在巴西、墨西哥湾、西非三大热点地区。截至2007年,海上油气探明储量约1526×108t,占全部探明储量的27%左右,深水已成为未来油气生产的重要基地。21世纪以来,各大石油公司纷纷加快进军深水区域的步伐,不断加强勘探开发投资力度,海上油气产量稳步上升。西非、北美和拉丁美洲依然是未来深水油气生产的重要区域,亚洲也将成为一个十分重要的深水油气生产基地。但深水油气勘探开发也面临着两个挑战:一是深水油气勘探开发难度不断增加;二是深水油气勘探开发投资回报率不断下降。如果未来不能很好地解决深水技术难题,将会降低深水油气资源项目的吸引力。  相似文献   

19.
Increasing energy consumption in Asia Pacific will largely be met by fossil fuels. Natural gas production in the region presently ranks behind that of oil and coal. However, the abundance of gas could lead to a significant gas market share increase in the energy mix. The purpose of this paper is to estimate the total endowment of conventional gas in Asia Pacific. This is carried out with a Variable Shape Distribution (VSD) model that forecasts volumes in provinces that have not been previously evaluated. The endowment is then distributed across countries to show where volumes are most likely to be found. A breakdown between offshore versus onshore resources is also estimated. The results of the analysis show there is a significant gas endowment. The estimated distribution across countries and onshore/offshore areas provides insight into the relative economics of gas production, as well as a basis for potential investment decisions. With appropriate energy policies, it may be possible to tap the vast gas potential in Asia Pacific. Considering gas may be the most abundant, inexpensive, and clean fossil fuel, the outcome would be increased energy security and a low carbon economy.  相似文献   

20.
In the last decade, multiple studies focusing on national-scale assessments of the ocean wave energy resource in Australia identified the Southern Margin to be one of the most energetic areas worldwide suitable for the extraction of wave energy for electricity production. While several companies have deployed single unit devices, the next phase of development will most likely be the deployment of parks with dozens of units, introducing the risk of conflicts within the marine space.This paper presents a geo-spatial multi-criteria evaluation approach to identify optimal locations to deploy a wave energy farm while minimizing potential conflicts with other coastal and offshore users. The methodology presented is based around five major criteria: ocean wave climatology, nature of the seabed, distance to key infrastructure, environmental factors and potential conflict with other users such as shipping and fisheries.A case study is presented for an area off the south-east Australian coast using a total of 18 physical, environmental and socio-economic parameters. The spatial restrictions associated with environmental factors, wave climate, as well as conflict of use, resulted in an overall exclusion of 20% of the study area. Highly suitable areas identified ranged between 11 and 34% of the study area based on scenarios with varying criteria weighting. By spatially comparing different scenarios we identified persistence of a highly suitable area of 700 km2 off the coast of Portland across all model domains investigated. We demonstrate the value of incorporation spatial information at the scale relevant to resource exploitation when examining multiple criteria for optimal site selection of Wave Energy Converters over broad geographic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号