首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Methanol-induced conformational transitions of hen egg white lysozyme were investigated with a combined use of far- and near-UV CD and NMR spectroscopies, ANS binding and small-angle X-ray scattering. Addition of methanol induced no global change in the native conformation itself, but induced a transition from the native state to the denatured state which was highly cooperative, as shown by the coincidence of transition curves monitored by the far- and near-UV CD spectroscopy, by isodichroic points in the far- and near-UV CD spectra and by the concomitant disappearance of individual 1H NMR signals of the native state. The ANS binding experiments could detect no intermediate conformer similar to the molten globule state in the process of the methanol denaturation. However, at high concentration of methanol, e.g., 60% (v/v) methanol/water, a highly helical state (H) was realized. The H state had a helical content much higher than the native state, monitored by far-UV CD spectroscopy, and had no specific tertiary structure, monitored both by near-UV CD and NMR spectroscopy. The radius of gyration in the H state, 24.9 angstroms, was significantly larger than that in the native state (15.7 angstroms). The Kratky plot for the H state did not show a clear peak and was quite similar to that for the urea-denatured state, indicating a complete lack of globularity. Thus we conclude that the H state has a considerably expanded, flexible broken rod-like conformation which is clearly distinguishable from the "molten globule" state. The stability of both N and H states depends on pH and methanol concentration. Thus a phase diagram involving N and H was constructed.  相似文献   

2.
Hen egg-white lysozyme dissolved in glycerol containing 1% water was studied by using CD and amide proton exchange monitored by two-dimensional 1H NMR. The far- and near-UV CD spectra of the protein showed that the secondary and tertiary structures of lysozyme in glycerol were similar to those in water. Thermal melting of lysozyme in glycerol followed by CD spectral changes indicated unfolding of the tertiary structure with a Tm of 76.0 +/- 0.2 degreesC and no appreciable loss of the secondary structure up to 85 degreesC. This is in contrast to the coincident denaturation of both tertiary and secondary structures with Tm values of 74.8 +/- 0.4 degreesC and 74.3 +/- 0.7 degreesC, respectively, under analogous conditions in water. Quenched amide proton exchange experiments revealed a greater structural protection of amide protons in glycerol than in water for a majority of the slowly exchanging protons. The results point to a highly ordered, native-like structure of lysozyme in glycerol, with the stability exceeding that in water.  相似文献   

3.
The equilibrium unfolding and the kinetics of unfolding and refolding of equine lysozyme, a Ca2+-binding protein, were studied by means of circular dichroism spectra in the far and near-ultraviolet regions. The transition curves of the guanidine hydrochloride-induced unfolding measured at 230 nm and 292.5 nm, and for the apo and holo forms of the protein have shown that the unfolding is well represented by a three-state mechanism in which the molten globule state is populated as a stable intermediate. The molten globule state of this protein is more stable and more native-like than that of alpha-lactalbumin, a homologous protein of equine lysozyme. The kinetic unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by stopped-flow circular dichroism. The observed unfolding and refolding curves both agreed well with a single-exponential function. However, in the kinetic refolding reactions below 3 M guanidine hydrochloride, a burst-phase change in the circular dichroism was present, and the burst-phase intermediate in the kinetic refolding is shown to be identical with the molten globule state observed in the equilibrium unfolding. Under a strongly native condition, virtually all the molecules of equine lysozyme transform the structure from the unfolded state into the molten globule, and the subsequent refolding takes place from the molten globule state. The transition state of folding, which may exist between the molten globule and the native states, was characterized by investigating the guanidine hydrochloride concentration-dependence of the rate constants of refolding and unfolding. More than 80% of the hydrophobic surface of the protein is buried in the transition state, so that it is much closer to the native state than to the molten globule in which only 36% of the surface is buried in the interior of the molecule. It is concluded that all the present results are best explained by a sequential model of protein folding, in which the molten globule state is an obligatory folding intermediate on the pathway of folding.  相似文献   

4.
alpha-Lactalbumin, a small calcium-binding protein, forms an equilibrium molten globule state under a variety of conditions. A set of four peptides designed to probe the role of local interactions and the role of potential long-range interactions in stabilizing the molten globule of alpha-lactalbumin has been prepared. The first peptide consists of residues 20 through 36 of human alpha-lactalbumin and includes the entire B-helix. This peptide is unstructured in solution as judged by CD. The second peptide is derived from residues 101 through 120 and contains both the D and 310 helices. When this peptide is crosslinked via the native 28 to 111 disulfide to the B-helix peptide, a dramatic increase in helicity is observed. The crosslinked peptide is monomeric, as judged by analytical ultracentrifugation. The peptide binds 1-anilinonaphthalene-8-sulphonate (ANS) and the fluorescence emission maximum of the construct is consistent with partial solvent exposure of the tryptophan residues. The peptide corresponding to residues 101 to 120 adopts significant non-random structure in aqueous solution at low pH. Two hydrophobic clusters, one involving residues 101 through 104 and the other residues 115 through 119 have been identified and characterized by NMR. The hydrophobic cluster formed by residues 101 through 104 is still present in a smaller peptide containing only residues 101 to 111 of alpha-lactalbumin. The cluster also persists in 6 M urea. A non-native, pH-dependent interaction between the Y103 and H107 side-chains that was previously identified in the acid-denatured molten globule state was examined. This interaction was found to be more prevalent at low pH and may therefore be an example of a local interaction that stabilizes preferentially the acid-induced molten globule state.  相似文献   

5.
The chaperone-like alpha-crystallin prevents aggregation of several proteins by interacting with their non-native states. Alpha-Lactalbumin adopts different non-native states under different experimental conditions. We have investigated the interaction of alpha-crystallin with three non-identical non-native states, using fluorescence, circular dichroism, and gel filtration chromatography. The compact molten globule state of apo-alpha-lactalbumin in tris buffer does not interact with alpha-crystallin. The expanded, flexible molten globule-like state of reduced apo-alpha-lactalbumin (formed at pH 7.2) also does not interact with alpha-crystallin. Only the aggregation-prone non-native state of reduced apo-alpha-lactalbumin formed at pH 6.0 interacts with alpha-crystallin to form a stable complex. The alpha-crystallin bound reduced apo-alpha-lactalbumin exhibits properties similar to those of a molten globule. Our results show that alpha-crystallin interacts only with the aggregation prone molten globule state of reduced apo-alpha-lactalbumin but not with the other non-aggregating molten globule states of the protein.  相似文献   

6.
Papain exhibits the characteristics of molten globule under acidic conditions as seen by circular dichroism, fluorescence and ANS binding. Between pH 2.0-2.5 the protein exhibits substantial secondary structure as indicated by far-UV CD spectrum but loses the persistent tertiary interactions of the native state. Enhanced binding of ANS to the state at pH 2.0 in relation to the native and unfolded states at neutral pH indicates a considerable exposure of aromatic side chains. Temperature and guanidine hydrochloride induced unfolding of papain in this state is noncooperative and the transition curves are biphasic in nature. As papain molecule consists of two domains, the results suggest that the domains unfold independently and sequentially.  相似文献   

7.
In hereditary cystatin C amyloid angiopathy (HCCAA), presence of the Leu68 --> Gln substitution in cystatin C is coupled to a decreased concentration of this major cysteine proteinase inhibitor in cerebrospinal fluid and leads to its amyloid deposition in the brain. We established a high-yield expression system for L68Q cystatin C in Escherichia coli resulting in inclusion body accumulation at a level of 40% of the total cellular protein. Refolding of protein from purified inclusion bodies yielded a pure, almost completely monomeric and active inhibitor. CD and NMR spectroscopy demonstrated that so produced L68Q cystatin C is folded, conformationally homogeneous, and structurally very similar to wild-type cystatin C. Incubation at pH 7.0-5.5 caused the cystatin C variant to dimerize rapidly. The molecular form present at pH 6.0 displayed a slightly increased amount of hydrophobic parts on the surface as measured by 1-anilinonaphthalene-8-sulfonic acid (ANS) binding. NMR results showed that the dimer has a structure similar to that of the wild-type cystatin C dimer formed as a result of slight denaturation. Under more acidic conditions, at pH 4.5, another stable unfolding intermediate of L68Q cystatin C was identified. This molecular form exists in a monomeric state, is characterized by changes in secondary structure according to far UV CD spectroscopy, and shows an altered ANS binding resembling that of a molten globule state. The acidic pH also caused an almost complete monomerization of preformed dimers. The state of denaturation of L68Q cystatin C in vivo is thus a critical factor for the concentration of active cysteine proteinase inhibitor in cerebrospinal fluid and likely also for the development of amyloidosis, in HCCAA patients.  相似文献   

8.
The protein alpha-lactalbumin exists in a partially folded molten globule state at pH 2.0, the A state. This state is believed to be compact, possessing a similar amount of secondary structure to the native state but having a flexible tertiary structure comprised mainly of non-specific hydrophobic clustering of residues. Addition of trifluoroethanol (TFE) to bovine, human and guinea pig alpha-lactalbumin at pH 2.0 has been found in each case to induce a conformational transition in the A state as monitored by circular dichroism, nuclear magnetic resonance chemical shifts, and 1-anilinonaphthalene-8-sulphonate binding. The mid-point of this transition is near 15% (v/v) TFE and is effectively complete by 50% (v/v) TFE at 315 K. Far ultraviolet circular dichroism ellipticities at 208 nm and 220 nm, usually taken as a measure of the degree of helical character, are substantially more negative in the TFE state than in the A state. Furthermore, backbone amide protons protected from solvent exchange in the A state are generally at least as strongly protected in the TFE state; patterns of protection appear similar in the two states and include at least part of both the B and C alpha-helices. One major difference from the A state is nevertheless evident: the ability to bind the fluorescent probe 1-anilinonaphthalene-8-sulphonate, characteristic of molten globule states, is lost in the TFE state. Like the A state, the TFE state of alpha-lactalbumin shows little chemical shift dispersion of side-chain resonances. Extensive line broadening in the nuclear magnetic resonance spectra, characteristic of slow conformational averaging in the A state, is, however, much reduced in the TFE state. The line narrowing observed in the TFE state has made it possible to obtain directly sequence-specific assignments for about 25% of the 123 residues of bovine alpha-lactalbumin in 50% (v/v) TFE. Two helices are amongst regions of structure so far identified from short-range backbone nuclear Overhauser enhancement (NOE) connectivities in two-dimensional spectra of the TFE state. One of the helices (residues 86 to 96) corresponds to the C-helix in the native structure. The other (residues 35 to 41) corresponds, however, to a region of the sequence that is not helical in the native state. The partially folded state of alpha-lactalbumin formed in TFE, therefore, supports both native and non-native secondary structure in the absence of persistent long-range tertiary structure.  相似文献   

9.
On account of its ability to discriminate between secondary, loop and sidegroup structure and its special sensitivity to conformational mobility, vibrational Raman optical activity (ROA) has provided new insights into the complexity of order within the molten globule state from measurements on alpha-lactalbumin at pH 2.0 over the temperature range 2 to 45 degrees C. Thus while much of the secondary structure present in the native protein persists with only a small gradual decrease with increasing temperature, the tertiary backbone fold changes dramatically, being almost complete and native-like at 2 degrees C and almost completely disordered at 35 degrees C. The change of the tertiary fold with temperature is cooperative but has no latent heat, and so has the approximate characteristics of a continuous phase transition, being of the order-disorder type since it involves the interconversion of rigid, locally-ordered loop structure with disordered mobile backbone structure. This has implications for protein folding because the long-range correlations that exist in the critical region of a continuous (but not in a first-order) phase transition could resolve, in principle, the problem of how the protein finds its native-like folding pattern at the molten globule stage.  相似文献   

10.
The thermal denaturation of bovine and human apo-alpha-lactalbumins at neutral pH has been studied by intrinsic protein fluorescence, circular dichroism (CD), and differential scanning microcalorimetry (DSC) methods. Apo-alpha-lactalbumin possesses a thermal transition with a midpoint about 25-30 degrees C under these conditions (pH 8.1, 10 mM borate, 1 mM EGTA), which is reflected in changes in both fluorescence emission maximum and quantum yield. However, the CD showed a decrease in ellipticity at 270 nm with a midpoint at about 10-15 degrees C, while DSC shows the transition within the region of 15-20 degrees C. The non-coincidence of transition monitored by different methods suggests the existence of an intermediate state in the course of the thermal denaturation process. This intermediate state is not the classical molten globule state which occurs at higher temperature (i.e. denatured state at these conditions) [D.A. Dolgikh, R.I. Gilmanshin, E.V. Brazhnikov, V.E. Bychkova, G.V. Semisotnov, S.Y. Venyaminov and O.B. Ptitsyn, FEBS Letters, 136 (1981) 311-315] and has physical properties intermediate between the native and molten globule states.  相似文献   

11.
Acetylcholinesterase from Torpedo californica partially unfolds to a state with the physicochemical characteristics of a "molten globule" upon mild thermal denaturation or upon chemical modification of a single non-conserved buried cysteine residue, Cys231. The protein in this state binds tightly to liposomes. It is here shown that the rate of unfolding is greatly enhanced in the presence of unilamellar vesicles of dimyristoylphosphatidylcholine, with concomitant incorporation of the protein into the lipid bilayer. Arrhenius plots reveal that in the presence of the liposomes the energy barrier for transition from the native to the molten globule state is lowered from 145 to 47 kcal/mol. Chemical modification of Cys231 by mercuric chloride produces initially a quasinative state of Torpedo acetylcholinesterase which, at room temperature, undergoes spontaneous transition to a molten globule state with a half-life of 1-2 hr. This permitted temporal resolution of interaction of the quasi-native state with the membrane from the transition of the membrane-bound protein to the molten globule state. The data presented here suggest that either the native enzyme, or a quasi-native state with which it is in equilibrium, interacts with the liposome, which then promotes a fast transition to the membrane-bound molten globule state by lowering the energy barrier for the transition. These findings raise the possibility that the membrane itself, by lowering the energy barrier for transition to a partially unfolded state, may play an active posttranslational role in insertion and translocation of proteins in situ.  相似文献   

12.
A number of cloned soluble fragments if the bacterial chemotaxis transmembrane receptors retain partial function. Prior studies of a fragment corresponding to the cytoplasmic domain (c-fragment) of the Escherichia coli aspartate receptor have correlated the signaling state of mutant receptors with the oligomerization state of the c-fragments: equilibria of smooth-swimming mutants are shifted toward oligomeric states; tumble mutants are shifted toward monomeric states [Long, D. G., & Weis, R. M. (1992) Biochemistry 31, 9904-9911]. We have applied several experimental probes of local and global structural flexibility to two signaling states, the wild-type (monomeric) and S461L smooth mutant (predominantly dimeric) c-fragments. Featureless near-UV CD spectra are observed, which indicate that the single Trp residue is in a symmetric environment (most likely averaged by fluctuations) and suggest that the C-termini of both proteins are highly mobile. Both proteins undergo extremely rapid proteolysis and enhance ANS fluorescence, which indicates that many sites are accessible to trypsin cleavage and hydrophobic sites are accessible to ANS binding. The global nature of the flexibility is demonstrated by 1H NMR studies. Lack of chemical shift dispersion suggests that fluctuations average the environments of side chains and backbone protons. Rapid exchange of 99% of the observable amide protons suggests that these fluctuations give high solvent accessibility to nearly the entire backbone. This evidence indicates that both monomeric and dimeric c-fragments are globally flexible proteins, with properties similar to "molten-globule" states. The significance of this flexibility depends on whether it is retained in functioning receptors: the c-fragment structure may lack important tertiary contacts, protein-protein interactions, or topological constraints needed to stabilize a nondynamic native structure, or the cytoplasmic domain of the native receptor may retain flexibility which may be modulated in the mechanism of transmembrane signaling.  相似文献   

13.
Native state 1H NMR resonance assignments for 125 of the 129 residues of equine lysozyme have enabled measurement of the hydrogen exchange kinetics for over 60 backbone amide and three tryptophan indole hydrogen atoms in the native state. Native holo equine lysozyme hydrogen exchange protection factors are as large as 10(6), the most protected residues being located in elements of secondary structure. High exchange protection in the domain interface correlates with the binding of Ca2+ in this region. Equine lysozyme differs from most non-Ca2+ binding lysozymes in forming a highly populated partially folded state at low pH. The protein in this A-state at pH 2.0 has been found to bind 1-anilino-naphthalene-8-sulphonate with the enhancement of fluorescent intensity and blue shift in the spectral maximum characteristic of molten globules. NMR spectra indicate that the A-state is globally much less ordered than native equine lysozyme but does not contain significant regions of random coil structure. The amides most protected against hydrogen exchange in the A-state (protection factors up to 10(2) at 5 degrees C) correspond to residues of three of the four alpha-helices of the native state; the side-chains of these residues form a hydrophobic cluster that includes five aromatic residues. Circular dichroism and tryptophan fluorescence indicate that these residues are substantially more constrained than similar residues in "classical" molten globules. Taken together, the data suggest a model for the A-state of equine lysozyme in which a more ordered core is surrounded by a less ordered but still compact polypeptide chain.  相似文献   

14.
The eukaryotic acidic ribosomal P proteins, contrary to the standard r-proteins which are rapidly degraded in the cytoplasm, are found forming a large cytoplasmic pool that exchanges with the ribosome-bound proteins during translation. The native structure of the P proteins in solution is therefore an essential determinant of the protein-protein interactions that take place in the exchange process. In this work, the structure of the ribosomal acidic protein YP2beta from Saccharomyces cerevisiae has been investigated by fluorescence spectroscopy, circular dichroism (CD), nuclear magnetic resonance (NMR), and sedimentation equilibrium techniques. We have established the fact that YP2beta bears a 22% alpha-helical secondary structure and a noncompact tertiary structure under physiological conditions (pH 7.0 and 25 degrees C); the hydrophobic core of the protein appears to be solvent-exposed, and very low cooperativity is observed for heat- or urea-induced denaturation. Moreover, the 1H-NMR spectra show a small signal dispersion, and virtually all the amide protons exchange with the solvent on a very short time scale, which is characteristic of an open structure. At low pH, YP2beta maintains its secondary structure content, but there is no evidence for tertiary structure. 2,2,2-Trifluoroethanol (TFE) induces a higher amount of alpha-helical structure but also disrupts any trace of the remaining tertiary fold. These results indicate that YP2beta may have a flexible structure in the cytoplasmic pool, with some of the characteristics of a "molten globule", and also point out the physiological relevance of such flexible protein states in processes other than protein folding.  相似文献   

15.
Molecular dynamics simulations of alpha-lactalbumin were performed under conditions of neutral pH and low pH in order to study the acid-induced molten globule state. Through the use of experimental techniques such as NMR and CD spectroscopy, molten globules have been characterized as being compact intermediates with secondary structure similar to that of the native protein but with tertiary structure that is disordered. The detailed structure of the molten globule state is unknown, however. Through the use of computer simulations we can study the structural changes which occur upon lowering pH. The simulations presented here differ from previous unfolding simulations in two important ways: the electrostatic interactions are treated more accurately than ever before, and artificially high temperatures are not used to force the protein to unfold. Simulations of 880 psec each were run at pH 7 (control simulation) and pH 2. We concentrate on the interesting changes in the tertiary interactions within the protein with lowering of pH. In particular, there is a loss of native tertiary contacts in the beta domain and interdomain region, and a large decrease in interdomain hydrogen bonds.  相似文献   

16.
Comparative study of the natural ligand effect on structural properties and conformational stability of human alpha-fetoprotein (AFP) and its homologue, human serum albumin (HSA), was performed using several approaches, including circular dichroism, fluorescence spectroscopy, and scanning microcalorimetry. Here we show that denaturation of AFP, induced by the increase of temperature or urea concentration, is irreversible. We have established the fact that this irreversibility is caused by ligand release from the AFP molecule. Interestingly, the ligand-free form of AFP has no rigid tertiary structure but exhibits substantial secondary structure and high compactness. This means that the rigid tertiary structure of AFP is controlled by interaction with ligands, while their release results in transition of a protein molecule into a molten globule-like intermediate. In contrast, processes of HSA denaturation and unfolding are completely reversible. Release of ligands from HSA results only in a small decrease in stability but not transformation into the molten globule state.  相似文献   

17.
We demonstrate that a surfactant-stabilized molten globule intermediate exists for recombinant human growth hormone (rhGH), is very hydrophobic, and tends to form aggregates. Characterization of this intermediate included equilibrium denaturation measured by electron paramagnetic resonance (EPR) and CD spectroscopy, assessment of aggregation during refolding, and fluorescence studies of its binding to the hydrophobic probe, 1-anilinonapthalene-8-sulfonate (1,8-ANS). We have found that at 4.5 M guanidinium hydrochloride (GuHCl), a molten globule intermediate of rhGH is stabilized and results in significant aggregation upon refolding. This intermediate is populated by the addition of the nonionic surfactant, Tween. This surfactant also reduces the extent of aggregation during refolding of rhGH from 4.5 M GuHCl. Overall, our studies reveal that rhGH forms a molten globule-like intermediate during folding and this intermediate self-associates. This self-association is reduced upon formation of a Tween-rhGH complex. Tween also binds to the native protein. Thus, nonionic surfactants such as Tween may act like molecular chaperones in facilitating protein folding while not altering the native conformation.  相似文献   

18.
The problem of a variety of denatured forms of the protein molecule under equilibrium conditions is considered. The experimental conditions are described at which the protein molecule can exist in various non-native states. The history of the discovery of a universal intermediate molten globule state and the current status of research in this field are briefly outlined. Particular emphasis is placed on the fact that the molten globule state is a thermodynamic state of the protein molecule that is separated from both the native and the completely unfolded state by "all-or-none" transitions, i.e., intramolecular analogs of the 1st-order phase transitions. It is also shown that the molten globule state is not the only intermediate state observed for a particular protein under equilibrium conditions. The main structural features of the protein molecule in various denatured conformations are described. How many molten globule states there exist? A molten globule, a precursor of the molten globule, a highly structured molten globule: are these particular conformational states or different forms of the unique intermediate state? Or different forms of the native protein molecule with different degrees of disorder? Or differently structured forms of the unfolded polypeptide chain? This review is an attempt to answer these questions.  相似文献   

19.
The molten globule, a widespread protein-folding intermediate, can attain a native-like backbone topology, even in the apparent absence of rigid side-chain packing. Nonetheless, mutagenesis studies suggest that molten globules are stabilized by some degree of side-chain packing among specific hydrophobic residues. Here we investigate the importance of hydrophobic side-chain diversity in determining the overall fold of the alpha-lactalbumin molten globule. We have replaced all of the hydrophobic amino acids in the sequence of the helical domain with a representative amino acid, leucine. Remarkably, the minimized molecule forms a molten globule that retains many structural features characteristic of a native alpha-lactalbumin fold. Thus, nonspecific hydrophobic interactions may be sufficient to determine the global fold of a protein.  相似文献   

20.
By the high resolution NMR method was made comparative research of carboanhydrase B, alpha-lactalbumin and apomyoglobin in a molten globular state. It is shown that though in an observed spectra the typical signals at 5.7-5 ppm, responding to the signals of alpha-CH protons of the beta-structure, method of spin diffusion proves that after all is taking place in carboanhydrase B and alpha-lactalbumin, that corresponds with the data of CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号