首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
在WO3粉体材料中加入质量分数为4%的瓷粉和不同质量分数的金属氧化物(SnO2,SiO2,Al2O3),以恒温600℃烧结1 h制成旁热式厚膜可燃性气敏元件。采用静态电压测量法,研究了元件的加热电压与元件灵敏度的关系。实验结果表明:WO3基元件掺入一定量的金属氧化物在加热功率为600mW时能提高元件的灵敏度。  相似文献   

2.
在WO3粉体材料中加入Pt,PtO2,Pd,PdCl2,以恒温600℃烧结1h制成旁热式厚膜可燃性气敏元件。采用静态电压测量法,研究了元件的加热电压与元件灵敏度的关系。实验结果表明:WO3元件掺入质量分数为0.5%的Pt/Pd,在加热功率为600 mW时,能提高元件的灵敏度2~10倍。  相似文献   

3.
为了研究WO3的常温气敏性能,以热氧化钨丝的方法制备WQ3纳米材料并制作厚膜气敏元件,通过XRD对材料的晶体结构进行表征,对敏感元件进行了气敏性能测试,测得该元件在常温、0.4W/cm2紫外光(波长:300~450nm)辐照条件下对50ppm的NO2的灵敏度S=15.4,响应时间τres=2.5s,恢复时间τrec=18.1s;在加热功率为0.81W条件下,元件对50ppm NO2的灵敏度为S=22.5,响应时间τres=1.5s,恢复时间τrec=10.7s,研究了灵敏度对光功率密度和加热功率的依赖关系,实验结果表明WO3纳米材料在常温、紫外光照条件下对NO2具有较好的气敏性能.  相似文献   

4.
碳纳米管掺杂WO_3气敏元件敏感特性的研究   总被引:5,自引:0,他引:5  
研究以碳纳米管(CNT)为掺杂剂制备的CNT-WO3旁热式气敏元件。采用球磨、超声分散的方法对碳纳米管进行分散处理,溶胶—凝胶方法制备WO3微粉,用SEM观察了WO3气敏材料的显微结构,测试了元件对丙酮的气敏性能。结果表明:碳纳米管存在于平均粒径为30~50 nm的WO3晶粒间,从而增加了材料的气孔率。碳纳米管掺杂元件对丙酮的灵敏度远高于纯WO3元件,质量分数为0.4%的掺杂量对丙酮有最高灵敏度,具有能检测低体积分数丙酮气体、选择性好的优点,特别是掺杂碳纳米管明显提高了WO3元件的响应速度。  相似文献   

5.
WO3纳米材料的NO2气敏特性   总被引:10,自引:1,他引:10  
通过固相掺杂法制得一系列不同掺杂量的WO3纳米粉体,利用X射线衍射仪,透射电镜等测试手段分析了材料的微观结构,测试了元件的气敏,分现,适量掺杂SiO2有利于提高WO3纳米材料对NO2气体的灵敏度,其中掺杂量为3%(质量分数)的烧结型气敏元件在120℃下对NO2有较高的灵敏度的选择性,是一种工作温度较低气敏性能很好的NO2气敏元件。  相似文献   

6.
Zn2+掺杂WO3基气敏材料的制备及气敏性能研究   总被引:3,自引:0,他引:3  
通过加热分解钨酸制备的WO3与Zn(NO3)2溶液超声分散,制备出了掺杂Zn2 的WO3基气敏材料。研究了Zn2 掺杂对WO3气敏材料性能的影响。结果发现,Zn2 掺杂WO3基传感器对H2S有较好的气敏性能,在常温下对极低浓度(5×10-6)H2S也有很高的灵敏度(56),适量掺杂可以提高其灵敏度,Zn2 掺杂n_Zn~(2 )/n_W=2%的WO3基传感器的灵敏度最大,对50×10-6H2S在200℃灵敏度可达1800。通过X-射线衍射仪(XRD),比表面测定仪(BET)对材料进行了表征,比表面积范围介于2.5~3.5m2/g之间。结合有关理论,对元件气敏现象及机理进行了解释。  相似文献   

7.
ZnO-WO_3纳米复合氧化物的气敏性能研究   总被引:1,自引:1,他引:1  
以纳米ZnO为原料掺入4种质量分数的纳米WO3,经不同温度烧结制作了ZnO-WO3纳米复合氧化物气敏元件,讨论了掺杂质量分数和烧结温度对材料的相组分和气敏性能的影响。研究表明:Zn-W-O敏感体系中,WO3等辅相对材料气敏性能的影响十分明显,与纯纳米ZnO比较,450℃烧结、掺入质量分数为30%的WO3的敏感材料对200×10-6体积分数的乙醇和苯的灵敏度分别达到150和16。由于WO3与ZnO的酸碱中心相互催化作用,致使ZnO-WO3复合氧化物有着优异的敏感性能。  相似文献   

8.
纳米WO_3-ZnS系H_2S气敏元件的研究   总被引:7,自引:0,他引:7  
以纳米WO3 材料 ,分别掺入SnO2 、ZnS ,制备成H2 S气敏元件。实验表明 ,当WO3 掺入适量ZnS ,元件对H2 S气体具有较高的灵敏度及选择性  相似文献   

9.
WO_3掺杂NiO的气敏性能研究   总被引:2,自引:1,他引:1  
用水热法制备出NiO纳米粉体,对其进行了WO3系列掺杂。利用XRD对产物晶相结构进行表征,测试了掺杂材料的气敏性能。结果表明:适量WO3的掺杂明显改善了NiO材料的气敏性能,其中,掺杂质量分数为6%的气敏元件性能最好,350℃时对Cl2的灵敏度可达到37.5,200℃时对H2S的灵敏度可达30.4。说明该元件在不同温度下对不同气体具有选择性,且该元件对H2S响应恢复快。  相似文献   

10.
WO3基臭氧敏感元件的研制   总被引:4,自引:0,他引:4  
在三氧化钨粉体材料中加入金属氧化物,以恒温600℃烧结1小时制成傍热式厚膜O3气体敏感元件.采用静态电压测量法,研究了加入一定质量分数的Nb2O5、Fe2O3、Co3O4、TiO2、Sb2O3后元件的加热电压与电导率、元件灵敏度、60 s后回复几率的关系,讨论了掺杂成分和杂质的质量分数对材料的气敏性能和环境适应能力的影响.实验结果显示:2%TiO2- 3% Nb2O5-WO3元件能开发成理想的O3敏感元件.  相似文献   

11.
研究以贵金属Pd作为掺杂剂的ZnO纳米线敏感元件的乙醇气敏性能。采用水热法在叉指电极上直接制备出具有c轴取向的ZnO多晶纳米线。用SEM,XRD和EDS分析手段观测了材料的微观结构,并对其乙醇气敏性能进行了测试。实验结果表明:对于体积分数为200×10-6的乙醇气体,Pd掺杂的ZnO纳米线在灵敏度(8.17)、工作温度(325℃)和响应恢复时间(15,8s)上优于纯的ZnO纳米线。最后,对Pd掺杂的气敏机理进行了讨论。  相似文献   

12.
采用溶胶—凝胶法制得WO3/SrAl2 O4复合气敏材料.经过工艺加工制得旁热式厚膜陶瓷元件在密封的气室内测试,获得了对H2 S气体具有良好灵敏度、选择性和响应恢复性的气敏元件.为检测和治理生产生活中的H2 S污染,提供了可供参考应用的气敏传感元件.  相似文献   

13.
掺杂CNT的Fe2O3气体传感器对乙醇气敏特性的研究   总被引:1,自引:0,他引:1  
采用酸化后的碳纳米管(CNT)对Fe2O3进行不同比例的掺杂,利用扫描电镜(SEM)对气敏材料进行表征,制作成旁热式气体传感器后在乙醇气氛中与Fe2O3气体传感器进行对比。重点分析了掺杂量,工作温度及气体浓度对传感器灵敏度及响应恢复时间的影响,并对气敏机理进行了详细研究。结果表明碳纳米管的适量掺杂有效的提高了传感器的灵敏度并缩短了响应恢复时间,其中在216℃时对50×10-6的乙醇气体灵敏度达3.4。  相似文献   

14.
WO3掺杂对NiO基纳米材料VOCs气体气敏性能的影响   总被引:1,自引:0,他引:1  
用均匀共沉淀法制备纳米NiO材料,研究不同WO3添加量对材料气敏性能的影响.WO3的掺杂使NiO气敏材料对挥发性有机物(VOCs)气体的灵敏度有显著的提高,且通过XRD图谱分析,WO3的添加抑制了NiO晶粒生长,增大了材料的比表面积,改善了NiO材料的气敏性能.  相似文献   

15.
喷墨打印技术具有无需掩膜图形化、室温加工、方便操作等优点.利用喷墨打印技术在微热板上打印SnO2多孔薄膜.根据打印机的定位精度和微热板的悬空尺寸设计了打印图形,根据目标厚度确定打印层数,以及打印后的干燥工艺参数;通过扫描电镜对薄膜结构进行微观表征,敏感薄膜表面平整,成膜均匀;最后对其进行气敏测试,当微热板工作在250 ℃时,打印的SnO2气敏薄膜对乙醇有良好的响应,检测到最低乙醇浓度为0.5×10-6,响应和恢复时间均在3 s左右.  相似文献   

16.
Ultrafine SmFe0.7Co0.3O3 powder, prepared by a sol–gel method, shows a single-phase orthogonal perovskite structure. The influence of annealing temperature upon its crystal cell volume, microstructure, electrical and ethanol-sensing properties was investigated in detail. When the annealing temperature increases from 600 to 950 °C, the unit cell volume of the SmFe0.7Co0.3O3 sample reduces, and its average grain size increases. When the annealing temperature increases from 600 to 850 °C, the optimal working temperature and response to ethanol of the SmFe0.7Co0.3O3 sensor increase, and the response–recovery time shortens. But when the annealing temperature further increases from 850 to 950 °C, there are decreases of the optimal working temperature and sensor response, and the response–recovery time is prolonged. The results indicate that, as for sensor response, its optimal annealing temperature is about 850 °C, and the sensor based on SmFe0.7Co0.3O3 annealed at 850 °C shows the highest response S = 80.8 to 300 ppm ethanol gas, and it has the best response–recovery and selectivity characteristics. When the ethanol concentration is as low as 500 ppm, the curve of its optimal response versus concentration is nearly linear. Meanwhile, the influence mechanisms of annealing temperature upon the conductance, the optimal working temperature and sensor response for SmFe0.7Co0.3O3 were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号