首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binary self-assembled monolayers (SAMs) of di-(3-aminopropyl)-viologen (DAPV) and methylviologen (MV) molecules on indium tin oxide (ITO) were prepared by dipping the DAPV SAMs/ITO substrates into MV solution. The DAPV-MV SAM films were characterized by UV-vis. absorption spectroscopy, Rutherford backscattering spectroscopy, and cyclic voltammetry. Optical band gap, lowest unoccupied molecular orbital, and highest occupied molecular orbital of DAPV-MV SAMs were measured to be 1.6, -4.3, and -5.9 eV, respectively. We found that although DAPV SAMs have a quantum yield of 0.11%, the binary SAM films have a good quantum yield of 2.30%, which was 20 times higher than that of DAPV SAMs on ITO. This result may be due to the higher adsorption property of the binary SAMs for the light in visible range compared to that of DAPV SAMs. From this study, we demonstrated that the photocurrent generation systems with a high quantum yield can be obtained by the functional binary SAMs.  相似文献   

2.
The surface structure and adsorption conditions of biphenylthiol (BPT) self-assembled monolayers (SAMs) on Au(111) were examined using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). STM imaging revealed that the structural order of BPT SAMs formed in a 0.01 mM ethanol solution at 60 degrees C decreases with increasing immersion time. Interestingly, BPT SAMs formed after 30 min have unique ordered domains containing well-ordered (square root of 3 x square root of 3)R30 degrees structures and bright rows that are connected by small aggregated domains with a periodicity of approximately 10 angstroms, results that have never been observed for other thiol SAM systems. Distances between the bright rows were 20-35 angstroms. The bright small domains contained five or six BPT molecules each, which may have originated from differences in the adsorption orientations of biphenyl groups that were induced by localized interactions between them. XPS measurements for BPT SAMs on Au(111) showed the two sulfur peaks at 161.2 and 162.2 eV, implying the formation of chemisorbed monolayers. Our results are anticipated to be useful for understanding the formation and structure of BPT SAMs on gold surfaces.  相似文献   

3.
An alternating conjugated copolymer composed of pyrene and bithiophene units, poly(DHBT-alt-PYR) has been synthesized. The synthesized polymer was found to exhibit good solution processibility and thermal stability, losing less than 5% of their weight on heating to approximately 370 degrees C. The synthesized polymer showed its maximum absorption and peak PL emission at 401 and 548 nm, respectively. The optical band gap energy of the polymer was determined by absorption onset to be 2.64 eV. Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the polymer was determined to be -5.48 and -2.84 eV by cyclic voltametry (CV) and the optical band gap. The polymer photovoltaic devices were fabricated with a typical sandwich structure of ITO/PEDOT:PSS/active layer/LiF/Al using poly(DHBT-alt-PYR) as an electron donor and C60-PCBM or C70-PCBM as electron acceptors. The open circuit voltage, short circuit current and fill factor of the device using C70-PCBM as an acceptor were 0.75 V, 3.80 mA/cm2 and 0.28, respectively, and the maximum power conversion efficiency of the device was 0.80%.  相似文献   

4.
In this letter, TiO2 coated ITO mesoporous film was prepared by dipping doctor-blade ITO mesoporous film in TiO2 sol, followed by sintering at 500 °C for 30 min. The CdS quantum dots (QDs) were deposited on TiO2 coated ITO mesoporous film using sequential chemical bath deposition (S-CBD) method to form a three-dimensional (3D) electrode. The photo-activity of ITO mesoporous film/TiO2/CdS electrode was investigated by forming a photoelectrochemical cell, which indicated that the ITO mesoporous film/TiO2/CdS electrode was efficient in photoelectrochemical cell as a working electrode. The 3D electrode showed lower performance than the conventional electrode of TiO2 mesoporous film/CdS, and more works are needed to improve the performance of 3D electrode.  相似文献   

5.
Single-walled carbon nanotubes (SWNTs) layers formed on indium-doped tin oxide (ITO) electrodes for enhanced photoconversion efficiency of PbS/TiO2 quantum dots (Q dots)-sensitized photoelectrochemical solar cells (PECs). The short-circuit current of Q dots-sensitized PECs with SWNTs layers increased under illumination, and the dark current of the PECs was also reduced without illumination. Furthermore, the electron lifetimes of PbS/TiO2/SWNTs in open-circuit voltage decay is higher than that of PbS/TiO2 films at the same voltage. As a result, the power conversion efficiency of PbS/TiO2 on ITO increased 35.6% in the presence of SWNTs due to the improved charge-collecting efficiency and reduced recombination process.  相似文献   

6.
New hole injection materials for organic light emitting diodes (OLEDs) based on phenothiazine and phenoxazine were synthesized, and the electro-optical properties of synthesized materials were examined by through UV-visible (UV-vis), photoluminescence (PL) spectrum and cyclic voltammetry (CV). 1-BPNA-t-BPBP and 1-BPNA-t-BPBPOX showed T(g) of 127 and 200 degrees C, which are higher than that (110 degrees C) of 2-TNATA, a commercial hole injection layer (HIL) material. The highest occupied molecular orbital (HOMO) level of the synthesized materials of 1-BPNA-t-BPBP and 1-BPNA-t-BPBPOX were 4.97 and 4.91 eV, indicating values well-matched between HOMO (4.8 eV) of ITO and HOMO (5.4 eV) of NPB, hole transporting layer (HTL) material. As a result of using the synthesized materials in OLED device as HIL, 1-BPNA-t-BPBPOX of 2.43 Im/W was higher than 2-TNATA of 1.98 Im/W and 1-BPNA-t-BPBP of 1.39 Im/W in power efficiency. These results indicated that 1-BPNA-t-BPBPOX shows higher excellent power efficiency which is about 18% improved over 2-TNATA a commercial HIL material.  相似文献   

7.
Porphyrins are useful in materials science for optical, photoelectrochemical and chemical sensor applications. Solid films of oriented porphyrins on gold can be realized through a simple procedure and without synthesizing thiol-derivatized porphyrins. In order to immobilize the porphyrin rings on the surface, we prepared a 4-aminothiophenol (4-ATP) self-assembled monolayer (SAM) on gold(111) followed by axial legation, in situ, of cobalt(II) 5,10,15,20-tetrakis(4-tert-butylphenyl)-porphyrin (CoTBPP). Ultrahigh vacuum (UHV) Scanning Tunneling Microscopy (STM) studies performed on the SAMs revealed the Au(111) herringbone structure reconstruction, probably due to adsorption/desorption processes of molecules. STM images and Scanning Tunneling Spectroscopy (STS) measurements clearly showed that the immobilization of molecules also induced an electronic perturbation on the gold surface. This effect is ascribed to the presence of oriented molecular dipole layers between the metal and the organic material.  相似文献   

8.
The photoelectrochemical properties of TiO2-based photoelectrodes with metal oxide overlayers (e.g., ZnO, ZrO2, MgO, and Al2O3) were investigated. The metal oxides were deposited on TiO2/tin-doped indium oxide (ITO) films by spin-coating metal-alkoxide precursors. The formation of the overlayers was confirmed by energy dispersive X-ray spectroscopy (EDS) and high resolution transmission electron microscopy (HRTEM). Each overlayers were well-coated on the TiO2-based films and have approximately 2 nm thickness. The prepared films were used as photoanodes in a photoelectrochemical system with a Pt counter electrode to evaluate hydrogen production performance. Comparing with other overlayers, the ZnO-coated photoelectrode exhibits the highest rate of hydrogen evolution and which is better than the uncoated one. From the photoelectrochemical and spectroscopic study, the superior hydrogen production property of the ZnO-coated TiO2 photoelectrode was attributed to both the higher light absorbance of ZnO compared to TiO2 and the formation of hydroxyl groups at the ZnO surface.  相似文献   

9.
Self-assembled monolayers (SAMs) on coinage metal provide versatile modeling systems for studies of interfacial electron transfer, biological interactions, molecular recognition and other interfacial phenomena. Recently the bonding of enzyme to SAMs of alkanethiols onto Au electrode surfaces was exploited to produce a bio-sensing system. In this work, the attachment of trypsin to a SAMs surface of 11-mercaptoundecanoic acid was achieved using water soluble N-ethyl-N -(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide as coupling agent. The thickness of SAMs was determined by optical ellipsometer; contact angles of the modified Au surfaces were measured in air using a goniometer. The Second Harmony Generation data displays the last few percents of the alkylthiol molecules adsorbed and produced the complete monolayer by inducing the transition from a high number of gauche defects to an all-trans conformation. Using X-ray Photoelectron Spectroscopy (XPS) and Fourier-Transformed Infrared Reflection-Absorption and Attenuated Total Reflection Spectroscopes (FTIR-RAS and ATR), we examined the chemical structures of samples with different treatments. By matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), we demonstrated the digestion of bovine serum albumin (BSA) on the trypsin-immobilized SAMs surface.Experimental results have revealed that the XPS C1s core levels at 286.3 and 286.5 eV (Amine bond), 288.1 eV (Amide bond) and 289.3 eV (Carboxylic acid) illustrate the immobilization of trypsin. These data were also in good agreement with FTIR-ATR spectra for the peaks valued at 1659.4 cm– 1 (Amide I) and 1546.6 cm– 1 (Amide II). Using MALDI-TOF MS observations, analytical results have demonstrated the BSA digestion of the immobilized trypsin on the functionalized SAMs surface. For such surfaces, BSA was digested on the trypsin-immobilized SAMs surface, which shows the enzyme digestion ability of the immobilized trypsin. The terminal groups of the SAMs structure can be further functionalized with biomolecules or antibodies to develop surface-base diagnostics, biosensors, or biomaterials.  相似文献   

10.
Self-assembled monolayers (SAMs) formed by the adsorption of 4-fluorobenzenethiol (4-FBT) and 4-fluorobenzenemethanethiol (4-FBMT) on Au(111) were examined by scanning tunneling microscopy (STM) to understand the effect of a flexible methylene spacer between the sulfur head-group and phenyl group and the effect of solution temperature on the formation and structure of the SAMs. Although the adsorption of 4-FBT on Au(111) at room temperature for 24 h generated only disordered phase SAMs containing gold adatom islands, 4-FBT at 75 degrees C for 2 h formed mixed SAMs: disordered phases and ordered (2 x 12√(2))R10 degrees superlattice with a rectangular unit cell containing six adsorbed molecules. On the other hand, SAMs formed from 4-FBMT, with a methylene spacer, at room temperature for 24 h on Au(111) had irregularly ordered phases containing uniformly distributed VIs with lateral dimensions of 2-5 nm; SAMs formed from 4-FBMT at 75 degrees C for 2 h were composed of slightly improved ordered phases and larger VIs with lateral dimensions of 5-12 nm as a result of Ostwald ripening. From this study, we found that the methylene spacer plays an important role in controlling the structure of SAMs formed from p-substituted fluorinated aromatic thiols.  相似文献   

11.
ITO deposited by pyrosol for photovoltaic applications   总被引:1,自引:0,他引:1  
The goal of this work is to investigate morphology, electrical and optical properties of indium-tin-oxide (ITO) deposited by pyrosol on glass and Si substrates at different temperatures and to implement such layers for the processing of Si-based solar cells. The influence of the methanol/H2O ratio on general properties of ITO was investigated. Atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission spectra, ellipsometry and resistivity measurements were used for the analysis. It is shown that properties of ITO layers depend dramatically on the substrate used. It is shown that the resistivity of ITO layers deposited on a glass substrate is higher up to 2.5 times, compared to that of ITO layers deposited on a Si substrate at the same conditions, but in both cases decreases if the deposition temperature increases. Moreover, ITO layers deposited on a glass substrate are more flat and their refractive indexes are always lower for all deposition temperatures. An increase of the H2O concentration in a film-forming solution leads to a decrease of the ITO film resistivity and to a slight increase of the roughness. An application of pyrosol deposited ITO films as the top transparent electrodes for the (p+nn+)Si and heterojunction ITO/n-Si solar cells is demonstrated.  相似文献   

12.
In this paper the photoelectrochemical processes occurring in composites formed of organic-capped CdS nanocrystals and low molecular weight poly[2-methoxy-5-(2′-ethyl-exyloxy)phenylene vinylene] conjugated polymer were investigated. High quality colloidal CdS nanoparticles were synthesized by means of thermal decomposition of suitable precursors in non coordinating solvents, using oleic acid as surface capping agent.

The absorption and emission properties of the prepared heterojunctions were studied both in solutions and in composite films.

The dispersed hybrids were also investigated as photoactive materials, focusing on the photoinduced charge transfer and recombination processes at the interface between the two components. The composites have shown a fundamental role in photoelectrochemical applications due to the presence of a great number of interfaces able to enhance the charge transfer between mixture components.

Blend solutions prepared with octylamine capped CdS nanocrystals showed an improvement of the photoconductivity with respect to hybrids containing longer oleate surfactants.  相似文献   


13.
Cu-chalcogenide thin films were prepared using a two stage method: one step electrodeposition of CuISe and CIGSe, and the sulfurisation of CISe to prepare CISSe thin films. The films were deposited on different substrates: Mo and ITO coated glass. The optimum potentials for electrodeposition of CISe and CIGSe films were respectively selected in the range -400 to -550 mV and -650 to -700 mV (vs. SCE). The electrodeposited layers were firmly adhesive. The well known chalcopyrite structure appears after annealing at 400 degrees C under Argon for CISe. The band gap value deduced from the optical measurements is close to 1 eV. To increase this value, addition of gallium in the aqueous electrolytic solution was performed. A band gap value as high as 1.26 eV was recorded on the obtained CIGSe films. Sulfurisation of CISe layers under 5% H2S/Ar atmosphere lead to a shift of the position of the principal XRD peaks indicating the substitution of selenium atoms by sulfur atoms and thus the formation of the quaternary CISSe. Optical measurements performed on this quaternary compound show that our films exhibit a band gap value scaling from 1 eV to 1.4 eV depending on the amount of sulphur incorporated into the layers during the heat treatments.  相似文献   

14.
The structural and functional properties of ultrathin (<5 nm) poly(aniline) (PANI) films deposited on indium-tin oxide (ITO) have been investigated using electrochemical and attenuated total reflection (ATR) spectroscopy methods. Layer-by-layer (LbL) self-assembly was used to form films composed of one and two bilayers of PANI and poly(acrylic acid) (PAA), as well as single PANI layers of approximately monolayer thickness. PANI deposited on an ITO electrode is electroactive at neutral pH, both with and without codeposition of an acid dopant such as PAA. In the absence of PAA, it is hypothesized that the acidic surface groups on ITO can function as the counterion. The pH response of PANI single layer, (PANI/PAA)(1), and (PANI/PAA)(2) films was examined using both potentiometry and ATR spectroscopy. Near-Nernstian potentiometric responses over pH 3-9 were observed for all three types of films, consistent with the weak acid-base behavior expected of polymers assembled in a LbL film. The ATR spectral sensitivity to pH increases as the number of layers in the film increases, with the highest sensitivity achieved by monitoring the absorbance at 800 nm (predominately due to the emeraldine salt form) of (PANI/PAA)(2) films. Codeposition of PANI and PAA appears to produce a wide distribution of strengths of acidic and basic sites in the film and thus a large linear dynamic range, up to six pH units. The water contact angle of (PANI/PAA)(2) is approximately 16 degrees, which is considerably more hydrophilic than either the PANI single layer or (PANI/PAA)(1) films ( approximately 40 degrees ). This film is shown to be a suitable substrate for deposition of a planar supported phospholipid bilayer. The supported membrane is highly impermeable to protons, which makes this architecture useful for monitoring transmembrane charge transport.  相似文献   

15.
In this work, self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) were applied to induce the nucleation and growth of the antimony sulfide (Sb2S3) films on the functional ITO glass substrate at low temperature. The structure, morphology, and optical properties of the Sb2S3 films were investigated by X-ray diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy, and UV–vis spectroscopy. After thermal treatment at 200 °C for 1 h in air, the orthorhombic Sb2S3 was formed as a predominant phase in the deposited thin films. When the deposited films were thermally treated at 400 °C for 1 h in air, the orthorhombic Sb2S3 was decomposed and a cubic Sb2O3 was formed. The optical band energies of the as-deposited and thermally treated Sb2S3 films at 200 °C for 1 h in air and nitrogen were found to be 2.05 eV, 1.77, and 1.76 eV, respectively. As chemical templates, the OTS-functionalized SAMs played an important role in controlling the nucleation and growth of Sb2S3 films at low temperature. The results obtained from different preparation parameters applied in the present work will allow controlling the growth of the Sb2S3 films with uniform surface.  相似文献   

16.
Zinc oxide nanowires (ZnO NWs) were successfully synthesized on the ITO/PET polymer substrates by a hydrothermal method. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy investigations were carried out to characterize the crystallinity, surface morphologies, and orientations of these NWs, respectively. The influence of NW surface morphologies on the optical and electrical properties of ZnO NWs was studied. The hydrothermally grown ZnO NWs with direct band gap of 3.21 eV emitted ultraviolet photoluminescence of 406 nm at room temperature. Field emission measurements revealed that the threshold electric fields (Eth, current density of 1 mA/cm2) of ZnO NWs/ITO/PET and ZnO NWs/ZnO/ITO/PET are 1.6 and 2.2 V/microm with the enhancement factors, beta values, of 3275 and 4502, respectively. Furthermore, the field emission performance of ZnO NWs deposited on the ITO/PET substrate can be enhanced by illumination with Eth of 1.3 V/microm and displays a maximum emission current density of 18 mA/cm2. The ZnO NWs successfully grown on polymer substrate with high transmittance, low threshold electric field, and high emission current density may be applied to a flexible field emission display in the future.  相似文献   

17.
Self-assembled poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT) layers were prepared on polyelectrolytes multilayers (polyethylenimine and polyacrylic acid) on an indium–tin oxide (ITO) surface using a layer-by-layer technique. The electroluminescence efficiencies of the devices were drastically enhanced by the addition of self-assembled PEDOT layers between the spin-coated PEDOT and ITO. The ITO corrosion by the acidic PEDOT and the migration of the indium components across the interfacial layers were inhibited in the presence of the polyelectrolyte multilayers. Remarkably, the lifetime of the device was 60% longer than the one without the self-assemblies, which was attributed to the improvement in the interfacial contact.  相似文献   

18.
Meng S  Ren J  Kaxiras E 《Nano letters》2008,8(10):3266-3272
We investigate the electronic coupling between a TiO2 nanowire and a natural dye sensitizer, using state-of-the-art time-dependent first-principles calculations. The model dye molecule, cyanidin, is deprotonated into the quinonoidal form upon adsorption on the wire surface. This results in its highest occupied molecular orbital (HOMO) being located in the middle of the TiO2 bandgap and its lowest unoccupied molecular orbital (LUMO) being close to the TiO2 conduction band minimum (CBM), leading to greatly enhanced visible light absorption with two prominent peaks at 480 and 650 nm. We find that excited electrons are injected into the TiO2 conduction band within a time scale of 50 fs with negligible electron-hole recombination and energy dissipation, even though the dye LUMO is located 0.1-0.3 eV lower than the CBM of the TiO2 nanowire.  相似文献   

19.
We report the synthesis of copolymers containing fluorene and highly soluble anthracene derivatives, of general formula, poly{9,9'-bis-(4-octoloxy-phenyl)-fluorene-2,7-diyl-co-9,10-bis-(decy-1-ynyl)-anthracene-2,6-diyl}s (PFAnts). The PFAnts were synthesized via Suzuki coupling and the feed ratios of the anthracene derivative (Ant) were 1, 5, 10, 30, and 50 mol % of the total amount of monomer. PFAnts showed well-defined high molecular weights and were more soluble in conventional organic solvents. The photoluminescence spectra of PFAnts shifted to longer wavelengths with increases in Ant proportion and the PFAnts emitted various colors varying from greenish-blue to orange. The highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels trended toward enhanced hole and electron recombination balance as the Ant proportion increased, due to the better electron-accepting ability of the anthracene moiety compared to the fluorene moiety. Polymeric light-emitting diodes with the configurations ITO/PEDOT:PSS(40 nm)/polymer(60 nm)/Ca(10 nm)/Al(100 nm) (Device A) and ITO/PEDOT:PSS(40 nm)/polymer(60 nm)/Balq(40 nm)/LiF(1 nm)/Al(100 nm) (Device B) were fabricated using the polymers as emissive layers. Especially, Device B with PFAnt01 exhibited the highest measured maximum brightness of 1760 cd/m2 at 14 V, a maximum current efficiency of 1.66 cd/A, and a maximum external quantum efficiency of 0.70%.  相似文献   

20.
X.J. Wang 《Thin solid films》2006,515(4):1573-1578
Electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) films on indium tin oxide (ITO), using a very thin PEDOT:poly(styrene sulfonate) (PEDOT:PSS) film as a base coating, was carried out in a non-aqueous solution containing the monomer, an electrolyte and propylene carbonate by a two-electrode system. For comparison, PEDOT film electrodeposited on bare ITO substrate under the same condition was also presented. The PEDOT films deposited on these two substrates were characterized by scanning electron microscopy, energy disperse X-ray spectroscopy and Raman spectroscopy. The results indicate that the PEDOT film electrodeposited on bare ITO was not uniform, while the PEDOT film electrodeposited on PEDOT:PSS/ITO has better uniformity. The compositions of the different regions of PEDOT film electrodeposited on bare ITO and PEDOT:PSS/ITO were studied and discussed. Electrochromic devices (ECDs) based on PEDOT films electrodeposited on bare ITO and PEDOT:PSS/ITO were fabricated and characterized by UV-Vis-NIR spectrophotometric study. The results show that the display contrast of the ECD based on PEDOT film electrodeposited on PEDOT:PSS/ITO was improved over that on a bare ITO substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号