首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
In this work, we report our attempt on the production of well-aligned nanofibers of poly (ethylene oxide) (PEO) by the introduction of magnetic field in the electric field by placing a cylindrical magnet within the electric field. Well-aligned nanofibers were obtained on top of the magnet. No particular structure could be associated with the other sides of the magnet. The aligned nanofibers were characterized by a host of characterization techniques such as optical and scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The diameter of the PEO nanofibers ranged between 500 and 1000 nm.  相似文献   

2.
Ion conducting thin film polymer electrolytes based on polyethylene oxide (PEO) complexed with NaHCO3 salt has been prepared using solution-cast technique. The complexation of NaHCO3 salt with PEO is confirmed by XRD and IR studies. DC conductivity in the temperature range 303–368 K has been evaluated. The conductivity is found to increase in the PEO complex with the NaHCO3 salt and also with an increase in temperature. Using this polymer electrolyte, an electrochemical cell with the configuration Na/(PEO + NaHCO3)/(I2 + C + electrolyte) has been fabricated and its discharge characteristics studied. Open Circuit Voltage (OCV) and Short Circuit Current (SCC) are found to be 2.69 V and 1.28 mA, respectively. Other parameters associated with the cell are evaluated and presented in this paper.  相似文献   

3.
Electrospun poly(methyl methacrylate) nanofibers and microparticles   总被引:1,自引:0,他引:1  
Electrospinning at relatively low polymer concentrations results in particles rather than fibers. This particle-formation process can be termed as electrospray. So electrospinning/electrospray is a highly versatile method to process fibers and particles with different morphologies. In this work, poly(methyl methacrylate) (PMMA) micro- and nanostructures with different morphologies (fibers, spheres, cup-like, and ring-like) have been produced by a facile electrospinning/electrospray method. PMMA was electrospun into various morphologies from only DMF without any other solvents. Field emission scanning electron microscope (FESEM) images demonstrate the different morphologies and prove this technique to be an effective method for obtaining morphology-controllable polymer materials by changing the processing parameters. These micro- and nanostructured polymer materials may find applications in drug delivery and filtration media.  相似文献   

4.
In this study, polymeric nanofibrous composites containing anatase TiO2 short nanofibers (TiO2-SNF) were successfully produced via electrospinning. The fabrication of the nanofibrous composite structure includes two steps. First, anatase TiO2 nanofibers were obtained by calcination of electrospun PVP/TiO2 nanofibers and then crushed into short nanofibers ranging from few microns in length. Second, these TiO2-SNF were dispersed into polymer solutions and then electrospun into nanofibrous composites. We obtained nanofibers containing TiO2-SNF from different polymer types including PMMA, PAN, PET and PC. The SEM and TEM imaging indicated that some of the TiO2-SNF were fully covered by the polymeric matrix whereas some TiO2-SNF were partially covered and/or stick on the surface of the fibers. The photocatalytic activity of nanofibrous composites containing TiO2-SNF was evaluated by monitoring the photocatalytic decomposition of a model dye (rhodamine-6G) under UV irradiation.  相似文献   

5.
Composite carbon-tin oxide (C-SnO(2)) nanofibers are prepared by two methods and evaluated as anodes in lithium-ion battery half cells. Such an approach complements the long cycle life of carbon with the high lithium storage capacity of tin oxide. In addition, the high surface-to-volume ratio of the nanofibers improves the accessibility for lithium intercalation as compared to graphite-based anodes, while eliminating the need for binders or conductive additives. The composite nanofibrous anodes have first discharge capacities of 788 mAh g(-1) at 50 mA g(-1) current density, which are greater than pure carbon nanofiber anodes, as well as the theoretical capacity of graphite (372 mAh g(-1)), the traditional anode material. In the first protocol to fabricate the C-SnO(2) composites, tin sulfate is directly incorporated within polyacrylonitrile (PAN) nanofibers by electrospinning. During a thermal treatment the tin salt is converted to tin oxide and the polymer is carbonized, yielding carbon-SnO(2) nanofibers. In the second approach, we soak the nanofiber mats in tin sulfate solutions prior to the final thermal treatment, thereby loading the outer surfaces with SnO(2) nanoparticles and raising the tin content from 1.9 to 8.6 wt %. Energy-dispersive spectroscopy and X-ray diffraction analyses confirm the formation of conversion of tin sulfate to tin oxide. Furthermore, analysis with Raman spectroscopy reveals that the additional salt soak treatment from the second fabrication approach increases in the disorder of the carbon structure, as compared to the first approach. We also discuss the performance of our C-SnO(2) compared with its theoretical capacity and other nanofiber electrode composites previously reported in the literature.  相似文献   

6.
Electrospun nanofibers could be used to mimic the nanofibrous structure of the extracellular matrix (ECM) in native tissue.In tissue engineering,the ECM could be used as tissue engineering scaffold to ...  相似文献   

7.
In this study, a good combination consisting of electrospun titanium dioxide (TiO2) nanofibers incorporated with high purity hydroxyapatite (HAp) nanoparticles (NPs) and antimicrobial silver NPs is introduced for hard tissue engineering applications. The synthesized nanofibers were characterized by various state of art techniques like; SEM, XRD, TEM, TEM EDS and XPS analyses. SEM results confirmed well oriented nanofibers and good dispersion of HAp and silver NPs, respectively. XRD results demonstrated well crystalline feature of three components used for electrospinning. Silver NPs were having a diameter in range of 5–8 nm indicated by TEM analysis. Moreover, TEM EDS analysis demonstrated the presence of each component with good dispersion over TiO2 nanofiber. The surface analyses of nanofibers were investigated by XPS which indicated the presence of silver NPs on the surfaces of nanofibers. The obtained nanofibers were checked for antimicrobial activity by using two model organisms E. coli and S. aureus. Subsequently, antimicrobial tests have indicated that the prepared nanofibers do posses high bactericidal effect. Accordingly, these results strongly recommend the use of obtained nanofiber mats as future implant materials.  相似文献   

8.
Context: Ion exchange resins have ability to exchange their counter ions for ionized drug in the surrounding medium, yielding “drug resin complex.” Cyclodextrin can be applied for enhancement of drug solubility and stability.

Objective: Cyclodextrin inclusion complex of poorly water-soluble NSAIDs, i.e. meloxicam and piroxicam, was characterized and its novel application for improving drug loading onto an anionic exchange resin, i.e. Dowex® 1×2, was investigated.

Methods: β-cyclodextrin (β-CD) and hydroxypropyl β-cyclodextrin (HP-β-CD) were used for the preparation of inclusion complex with drugs in solution state at various pH. The inclusion complex was characterized by phase solubility, continuous variation, spectroscopic and electrochemistry methods. Then, the drug with and without cyclodextrin were equilibrated with resin at 1:1 and 1:2 weight ratio of drug and resin.

Results and discussion: Solubility of the drugs was found to increase with increasing cyclodextrin concentration and pH. The increased solubility was explained predominantly due to the formation of inclusion complex at low pH and the increased ionization of drug at high pH. According to characterization studies, the inclusion complex was successfully formed with a 1:1 stoichiometry. The presence of cyclodextrin in the loading solution resulted in the improvement of drug loading onto resin.

Conclusions: Enhancing drug loading onto ion-exchange resin via the formation of cyclodextrin inclusion complex is usable in the development of ion-exchange based drug delivery systems, which will beneficially reduce the use of harmful acidic or basic and organic chemicals.  相似文献   

9.
Electrospinning process was used to fabricate hybrid TiO2 nanofibrous membrane containing multi-walled carbon nanotubes (MWCNTs). The MWCNTs treated with plasma modification as established in our previous studies are dispersed in the mixture of titanium (IV) isopropoxide and poly(methyl methacrylate) in N,N-dimethylformamide prior to electrospinning. Diameter of the calcined TiO2-MWCNTs nanofibers (NFs) ranged from 100 to 200 nm, and transmission electron microscopy shows that the MWCNTs are both embedded and lying externally on the NFs. Photoanodes for dye-sensitized solar cells are prepared by first conglutinating the nanofibrous membranes onto conducting glass substrate under methanol vapor treatment followed by calcination and dye sensitization. The NFs exhibit improved conducting behavior (from 10?8 to 10?6 S/m) with small quantity (0.5–1.5 wt%) of MWCNTs. An optimum addition of 1.0 wt% MWCNTs into the TiO2 nanofibrous membrane improves the overall solar conversion efficiency by 47 % with significant increase in the short-circuit photocurrent. Electrochemical impedance spectroscopy and intensity-modulated photocurrent/photovoltage spectroscopy analyses reveal that the enhanced electron transport with smaller resistance is responsible for the improved cell performance. The results suggest that the conducting properties of the MWCNTs are crucial for faster transport of photogenerated electrons, hence retarding charge recombination that could result in poor conversion efficiency.  相似文献   

10.
We have measured the electrical conductivity of lanthanum oxide based composite materials containing different concentrations of carbon nanofibers as additives. The conductivity has been shown to increase sharply (by two orders of magnitude) at carbon nanofiber contents from 2 to 3 wt % owing to the formation of a three-dimensional network of nanofibers in the bulk of the composite. Particular attention has been paid to the morphology of the particles of the constituent components of the composites and to the chemical and phase compositions of the matrix material.  相似文献   

11.
Magnetic poly(l-lactide) (PLLA)/Fe3O4 composite nanofibers were prepared with the purpose to develop a substrate for bone regeneration. To increase the dispersibility of Fe3O4 nanoparticles (NPs) in the PLLA matrix, a modified chemical co-precipitation method was applied to synthesize Fe3O4 NPs in the presence of PLLA. Trifluoroethanol (TFE) was used as the co-solvent for all the reagents, including Fe(II) and Fe(III) salts, sodium hydroxide, and PLLA. The co-precipitated Fe3O4 NPs were surface-coated with PLLA and demonstrated good dispersibility in a PLLA/TFE solution. The composite nanofiber electrospun from the solution displayed a homogeneous distribution of Fe3O4 NPs along the fibers using various contents of Fe3O4 NPs. X-ray diffractometer (XRD) and vibration sample magnetization (VSM) analysis confirmed that the co-precipitation process had minor adverse effects on the crystal structure and saturation magnetization (Ms) of Fe3O4 NPs. The resulting PLLA/Fe3O4 composite nanofibers showed paramagnetic properties with Ms directly related to the Fe3O4 NP concentration. The cytotoxicity of the magnetic composite nanofibers was determined using in vitro culture of osteoblasts (MC3T3-E1) in extracts and co-culture on nanofibrous matrixes. The PLLA/Fe3O4 composite nanofibers did not show significant cytotoxicity in comparison with pure PLLA nanofibers. On the contrary, they demonstrated enhanced effects on cell attachment and proliferation with Fe3O4 NP incorporation. The results suggested that this modified chemical co-precipitation method might be a universal way to produce magnetic biodegradable polyester substrates containing well-dispersed Fe3O4 NPs. This new strategy opens an opportunity to fabricate various kinds of magnetic polymeric substrates for bone tissue regeneration.  相似文献   

12.
We report a new method for preparing β-cyclodextrin/poly(N-vinylpyrrolidone) composite nanofibers containing gold nanoparticles by electrospinning. β-Cyclodextrin is mixed into fibers as a new material, and it acts as stabilized reagent and reducing reagent in the synthesis of gold nanoparticles. TEM observation confirms that the gold nanoparticles are completely encapsulated within the composite nanofibers.  相似文献   

13.
(PEO)(x)MoO3.nH(2)O(x=0 similar to2) nanocomposite films were prepared by ion exchange method and polymer solution direct intercalation in sol-gel route. The synthesis and structure of the films were investigated by XRD, DSC, FTIR, etc. The results show that MoO3 xerogel has a layered structure, which arranges in b-direction. The interlayer distance Of MoO3 xerogel increases from 0.690 nm at x=0 to 1.308 nm at x=2 after heat treatment. PEO can be completely intercalated into the interlayer at x=0.5 similar to1 and has strong interaction with MoO3 host.  相似文献   

14.
Stomatitis is a harmful side effect induced by high and/or multiple dosing of cytotoxic drugs such as 5-fluorouracil. Allopurinol mouthwash has been used to prevent stomatitis induced by cancer chemotherapy. In the present study, the pharmaceutical utility of allopurinol mouthwash (Alkox-mw), which consists of polyethylene(oxide) (Alkox®) and iota-carrageenan (INA), was investigated as a possible material for a new oral dosage preparation for improving the adhesiveness onto the oral mucosa. From the observation of the gel formation, which was studied as a function of the variety of the added Alkox® and/or INA, the preferential compositions of Alkox®-mw (Alkox®:INA% ratio) seemed to be 1.0:(0-1.0) and (0-3.0):0.4, respectively. The adhesiveness and the spinnability of various allopurinol mouthwashes were also investigated using a creep meter. The adhesiveness of Alkox-mw increased with the increase in the amount of added Alkox®. Furthermore, the adhesion force of Alkox®-mw was greater than that of allopurinol mouthwash consisting of sodium carboxymethylcellulose (CMC-Na). From the in vitro assessment of mimicking the effusion of the allopurinol mouthwashes from the surface of the oral mucosa, the effusion of Alkox®-mws was retarded by the added Alkox. The results obtained in the present study suggest that Alkox®-mws may be useful as a new dosage form that adheres to the oral mucosa.  相似文献   

15.
The intercalation compounds Li0.96(H2O)0.77(PEO)0.63Ni0.48PS3 and Li0.94(H2O)0.92(PEO)0.94Fe0.48PS3 obtained by the insertion of PEO in MPS3 form lithium-polyethylene oxide complexes containing Li+ exchangeable cation in the interlayer space. Polyethylene oxide (PEO) is able to associate interlayer cation increasing the ionic conductivity of NiPS3 and FePS3. These compounds constitute a new family of intercalates MPS3 (M = Ni, Fe) host-layer materials.The new materials were characterized by powder X-Ray diffraction (XRD), Fourier-transformed infrared (FT-IR), differential thermal and thermogravimetric analyses (DTA/TG), energy dispersive X-Ray (EDX), inductively coupled plasma (ICP) and electrochemical impedance measurements. The intercalation compound Li0.96(H2O)0.77(PEO)0.63Ni0.48PS3 shows an ionic conductivity of 0.13 μS/cm, and dc electronic conductivity of ca. 0.1 μS/cm which is twice that of NiPS3.  相似文献   

16.
Poly(vinyl alcohol)-niobium oxide (Nb2O5) composite nanofibers (precursors) were formed by electrospinning employing water as a solvent for the spinning solution. The precursors were converted into Nb2O5 or carbide (NbC) nanofibers by heating them in air or Ar. Hexagonal Nb2O5 nanofibers with high-specific surface area were obtained by heat-treatment of the precursors in air. NbC nanofibers could be obtained below theoretical temperatures calculated from thermodynamics data, indicating that the precursor is a nano-scale mixture of Nb and carbon sources.  相似文献   

17.
The grafting of polybutylene oxide onto purified and functionalized carbon nanofibers is reported. Grafting was possible after the insertion of 2-(formyloxy)ethyl 2-bromo-2-methylpropanoate onto the carbon nanofibers. The polymerization of tetrahydrofuran was mediated by copper(I) bromide and 1,1,4,7-pentamethyl diethylenetriamine. The polymer-grafted carbon nanofibers were characterized by Raman spectrsocopy, Transmission Electron Microscopy, and Thermogravimetric Analysis. TEM images of CNF-COOH (A), CNF-PBO (B), completely open tip of CNF-COOH, and coated tip of CNF-PBO (D) are shown in the left panel. The right panel depicts the distribution of bromine (blue), and carbon (red) atoms inside and in the vicinity of CNF-Br (as obtained by Electron Energy Loss Spectroscopy). The bottom shows the actual doped CNF. Preliminary data showed that these modified fibers have potential applications as smart (electrorheological) fluids.  相似文献   

18.
A new experimental system has been developed, which enables measurements of linear as well as non-linear complex conductivities to be made. The frequency dependence of linear to fifth-order non-linear complex conductivities at different temperatures in a polyethylene oxide/salt complex can then be measured. A characteristic conduction relaxation phenomenon was observed in the spectra, which suggested the existence of different ion-conduction mechanisms between the high- and low-frequency regions. It was also found that the ratio of linear to non-linear conductivities was closely related to the elementary process of ionic transport. Furthermore, this ratio obtained from non-linear measurements allowed an estimate of the important parameters which characterized ionic transport in ion-conducting polymers, such as the hopping distance of an ion or the size of a connected cluster of the site capable of ion hopping, without the need for any additional assumptions. Thus, it was found that in a polyethylene oxide/salt complex, the typical size of a connected cluster of the effective sites capable of ion hopping was approximately 4 nm.  相似文献   

19.
A new enzymeless glucose sensor has been fabricated via electrospinning technology and subsequent calcination. The morphology and structure of the as-prepared nanofibers have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic oxidation of glucose in alkaline medium at nickel oxide modified glassy carbon electrodes has been investigated. The modified electrodes offer excellent electrocatalytic activity toward the glucose oxidation at low positive potential (0.3 V). Glucose has been determined chronoamperometrically at the surface of NiO nanofibers modified electrode in 0.5 mM NaOH. Under the optimized condition, the calibration curve is linear in the concentration range of 2 x 10(-3) mM - 1 mM, and 1 mM - 9.5 mM. The detection limit (signal-to-noise 3) and response time are 3.394 x 10(-6) M and 2 s, respectively. The NiO electrospun nanofibers is easy to prepare and feasible in economy. The modified electrode is steady and can be used repeatedly, so it is reasonable to expect its broad use in non-enzymatic glucose sensor.  相似文献   

20.
戴磊  龙柱 《功能材料》2015,(3):3110-3114
采用TEMPO(2,2,6,6-四甲基哌啶氧化物自由基)氧化纤维素纳米纤维(TOCNs)作为聚乙烯醇(PVA)/水性聚氨酯(WPU)静电纺膜的增强剂。研究中使用拉伸实验研究TOCNs的增强作用,此外还使用扫描电子显微镜、红外光谱仪、热重分析仪及差示扫描量热仪等对静电纺膜进行结构性能表征。扫描电镜观察发现当纳米纤维素加入量为5%(质量分数)时,其在聚合物基质中分散良好,所得静电纺纳米纤维保持了良好的形态。此外,加入5%(质量分数)的纳米纤维素能够将材料的抗张强度提高44%,且纳米纤维素的加入对材料的热稳定性也有一定的改善,纳米纤维素起到一种纳米填料的效果。鉴于PVA、WPU、TOCNs均为亲水性,无毒且具有生物相容性的物质,所得静电纺膜在组织支架及伤口护理材料等方面具有潜在应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号