首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of lactic acid for extraction of fish skin gelatin   总被引:1,自引:0,他引:1  
The ability of lactic acid compared to acetic acid for Dover sole (Solea vulgaris) skin swelling and the subsequent gelatin extraction was examined. The resultant gelatins were evaluated in terms of extraction yield, amino acid composition, molecular weight distribution, gel strength, viscoelastic properties, ability to refold into triple helical structures, and aggregation phenomena. Lactic acid (25 mM) proved to be an excellent substitute for acetic acid during the skin swelling process, as the gelatin preparation thus obtained presented quite similar properties to that prepared by using 50 mM acetic acid without the negative organoleptic properties of this acid. However, the application of 50 mM lactic acid gave rise to a highly hydrolysed gelatin, with lower folding ability, gel strength and viscoelastic properties than those obtained using 25 mM lactic acid or 50 mM acetic acid.  相似文献   

2.
ABSTRACT: Light-colored, dry collagen was obtained and, after dissolving in warm water, turned into soluble gelatin. The type of acid used influenced the gelatin viscoelastic and gelling properties. Acetic- and propionic-acid extracts produced the gelatins with the highest elastic modulus, viscous modulus, melting temperature, and gel strength, especially when skins were previously treated with dilute NaOH. After such treatment, lactic acid was also shown to be suitable for collagen or gelatin extraction. The lowest degree of turbidity was achieved by using citric acid, whereas propionic acid led to the most turbid gelatin. No improvements of rheological properties were observed when acid concentration for extraction was increased above 0.05 M.  相似文献   

3.
Haiying Liu  Ding Li  Shidong Guo 《LWT》2008,41(8):1425-1430
Gelatins were extracted from channel catfish skins preserved by different methods using 50 mmol/l acetic acid. Molecular weight distribution, gel strength and viscoelastic properties of gelatin samples were studied. Compared to gelatins from fresh and frozen skins, gelatin from dried channel catfish skin exhibited higher gel strength. This can be explained by the large α-chains content of gelatin from the dried skins. The gelling point and melting point of dried channel catfish skin gelatin solution were similar to those of fresh skin gelatin solution, but distinctly different from those of frozen skin gelatin. After maturation at low temperature, melting points of gelatins increased. But the melting point of frozen skin gelatin was still the highest among the three gelatin samples studied.  相似文献   

4.
本实验采用微波-快速冻融耦合处理鱼皮获得鱼皮明胶,并通过等电点、透射比、凝冻强度测定以及十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、流变学特性、氨基酸组成和傅里叶变换红外光谱分析对鱼皮明胶的理化性质进行表征。结果表明:与市场上的A型和B型明胶不同,微波-快速冻融耦合鱼皮明胶等电点为7,在450 nm波长处透射比为57.13%,在620 nm波长处透射比为78.07%,凝冻强度为524.40 Bloom g,满足GB 6783—2013《食品安全国家标准 食品添加剂 明胶》要求(在450 nm波长处透射比不低于30%,620 nm波长处透射比不低于50%,凝冻强度不低于50 Bloom g)。与传统酸法鱼皮明胶相比,微波-快速冻融耦合明胶氢键含量更高,三螺旋结构较为完整,亚氨基酸比例相近;但由于高分子亚基比例低,导致凝胶特性总体不及传统明胶。总体而言,微波-快速冻融耦合鱼皮明胶符合国标要求,该方法是明胶绿色清洁制备的良好探索。  相似文献   

5.
Films of 0.11 to 0.13 mm thickness were prepared using gelatins from the skins of cultured freshwater carp species and mammalian gelatins viz., porcine and bovine skin gelatin. A comparative study was made on the physical, mechanical, and barrier properties of these films. The amino acid composition, gel strength, clarity, and gel setting point of the gelatins were also determined. Carp skin gelatins had a lower imino acid content (19.16% to 20.86%) than mammalian skin gelatins (22.91% to 23.7%). Grass carp gelatin had gel strength of 230.2 B that is comparable to the reported value for bovine skin gelatin (227.2 B). The bloom values of rohu and common carp skin gelatins were 188.6 B and 181.3 B, respectively, which were significantly lower than mammalian gelatins. Mammalian gels have significantly higher (P < 0.05) setting temperatures (23.7 to 24.2 °C) than carp skin gelatins. Tensile strength (TS) was lowest for films from common carp and rohu skin gelatin (490 and 497 kg/cm(2), respectively) and highest for porcine skin gelatin film. The degree of transparency (L*) was significantly higher for films from grass carp, bovine hide, and pork skin gelatin films. Carp skin gelatin films had significantly lower water vapor permeability (WVP) and oxygen permeability (OP) than mammalian skin gelatin films, which indicated that carp skin gelatin based films have superior barrier properties than mammalian skin gelatin films.  相似文献   

6.
Sea bream scales and bones were used as sources of gelatin. Scales gave a higher gelatin yield than bones pretreated with HCl or Alcalase. Demineralization with EDTA was effective especially in the case of scale gelatin that showed the lowest ash content. The pretreatment of bones with HCl led to an increase in the removal of minerals. The gel strength and viscoelastic properties of sea bream scale gelatins were higher than those of bone gelatins, and only slight differences were found between gelatin extracted from bones pretreated with HCl or Alcalase, although the amino acid profile was similar in the three gelatins. The gel strength of scale gelatins was higher than that of a commercial bovine gelatin used for comparative purpose (Bloom 200–220). When the scales gelatin was hydrolyzed with Esperase, a high ACE-inhibitory activity was found in the peptide fraction below 3 kDa, and the amount of this peptide fraction required to inhibit 50% of the ACE activity (IC50) was around 60 μg/mL.  相似文献   

7.
Gelatins were prepared from the skins of the tropical fish, sin croaker (Johnius dussumeiri) and shortfin scad (Decapterus macrosoma). Visual appearance, colour, pH, bloom strength, viscoelasticity, melting point and amino acid profiles of the fish gelatins were evaluated. Shortfin scad gelatin had higher melting and gelling temperatures than those of sin croaker gelatin. The bloom strengths of gelatins from sin croaker and from shortfin scad were 125 and 177 g, respectively, compared to 240 g for commercial bovine gelatin. The pH values were significantly different between the solutions of the two fish gelatins. The elastic modulus (G′) of the fish gelatin gels increased by more than 10-fold and the viscous modulus (G″) of fish gelatin solution increased sixfold after holding at 5 °C for 2 h. These viscoelastic properties of bovine gelatin only increased by less than twice.  相似文献   

8.
《Food chemistry》2001,74(2):161-167
The gel properties of two different kinds of fish gelatins prepared from cod (Gadus morhua) and hake (Merluccius merluccius) and modified by the coenhancers glycerol, salt and microbial transglutaminase, were examined. Gel strength was substantially increased by the addition of coenhancers although results varied, depending on the species. In gelatin from hake (M. merluccius) skin, the highest values were obtained with 10 mg/g of transglutaminase, whereas magnesium sulphate was more effective at both concentrations (0.1 and 0.5 M) in gelatin from cod (G. morhua) skin. Although, in both gelatins, the addition of any ingredient increased the viscosity modulus (G″), the elastic modulus (G′) was only increased by the addition of glycerol 15% (w/v) and MgSO4 0.5 M in hake (M. merluccius) gelatins; in cod (G. morhua) it was increased by all ingredients. The gelling and melting points, very important properties in fish gelatin, showed a notable improvement, the behaviour being different, depending on the species.  相似文献   

9.
Water Vapor Permeability of Mammalian and Fish Gelatin Films   总被引:9,自引:0,他引:9  
R.J.  Avena-Bustillos  C.W.  Olsen  D.A.  Olson  B.  Chiou  E.  Yee  P.J.  Bechtel  T.H.  McHugh 《Journal of food science》2006,71(4):E202-E207
ABSTRACT:  Water vapor permeability of cold- and warm-water fish skin gelatins films was evaluated and compared with different types of mammalian gelatins. Alaskan pollock and salmon gelatins were extracted from frozen skins, others were obtained from commercial sources. Water vapor permeability of gelatin films was determined considering differences on percent relative humidity (%RH) at the film underside. Molecular weight distribution, amino acid composition, gel strength, viscoelastic properties, pH, and clarity were also determined for each gelatin. Water vapor permeability of cold-water fish gelatin films (0.93 gmm/m2hkPa) was significantly lower than warm-water fish and mammalian gelatin films (1.31 and 1.88 gmm/m2hkPa, respectively) at 25 °C, 0/80 %RH through 0.05-mm thickness films. This was related to increased hydrophobicity due to reduced amounts of proline and hydroxyproline in cold-water fish gelatins. As expected, gel strength and gel setting temperatures were lower for cold-water fish gelatin than either warm-water fish gelatins or mammalian gelatins. This study demonstrated significant differences in physical, chemical, and rheological properties between mammalian and fish gelatins. Lower water vapor permeability of fish gelatin films can be useful particularly for applications related to reducing water loss from encapsulated drugs and refrigerated or frozen food systems.  相似文献   

10.
ABSTRACT: Alaska pollock (Theragra chalcogramma) is the U.S.A.'s largest commercial fishery, with an annual catch of over 1 million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin-processing facilities in Alaska necessitates drying of the skins before transport to decrease the moisture content, but conventional hot-air drying is expensive. This study evaluated a less energy-intensive technology, the use of desiccants for reducing water weight in pollock skins prior to shipment. To ensure that the functional properties of gelatin obtained from dried pollock skins were not affected during desiccation, gelatins were prepared from each skin-drying treatment and compared with gelatin extracted from air-dried pollock skins. None of the desiccation treatments decreased the gel strength of pollock skin gelatin, nor were there major differences in gelling temperature or viscosity among the gelatin solutions. This suggests that pollock skins can be economically stabilized for transport to a gelatin-processing facility through the use of regenerable desiccants that are already common in the food industry. Practical Application: Pollock skins destined for gelatin production can be stabilized using chemical desiccants prior to shipment. The dehydration process does not harm the functional properties of gelatin, such as gel strength, gelling temperature, and viscosity. This research suggests that fish skins can be economically stabilized for transport to a gelatin-processing facility through the use of regenerable desiccants that are already common in the food industry.  相似文献   

11.
Drying was evaluated as preservation method for storage of Dover sole (Solea vulgaris) skins. Fish skins were air-dried by using ethanol, ethanol–glycerol mixture and marine salt, and stored at room temperature for 160 days. Gelatin extraction was carried out periodically during the storage time, and the quality of the resulting gelatin preparations was evaluated according to the molecular weight distribution, viscoelastic properties, gelling and melting temperatures and gel strength. All the drying methods used showed a similar effect on the gelatin quality characteristics evaluated. Although drying involved a slight decrease in viscoelastic properties as well as gelling and melting points, it was striking the great protein stability found throughout the storage period. Drying scarcely affected gel strength, which values did not show noticeable changes along the storage.  相似文献   

12.
Physico-chemical properties, functional properties, and antioxidative acitivities of gelatin from the skins of brownbanded bamboo shark (BBS; Chiloscyllium punctatum) and blacktip shark (BTS; Carcharhinus limbatus), as affected by extraction temperature, were investigated. ??-Amino acid group content and surface hydrophobicity of both gelatins from both species increased as the extraction temperature increased (P?<?0.05). Both gelatins had a high solubility (more than 80%) in a wide pH range (1?C10). Both gelatins extracted at 60?°C exhibited the highest emulsion activity index (EAI), emulsion stability index (ESI) and foam expansion (FE). The lowest foam stability (FS) was obtained when gelatin was extracted at 75?°C (P?<?0.05). The BBS gelatin had lower EAI, ESI, and FE than did BTS gelatin. Nevertheless, a higher FS was found in the former (P?<?0.05). Antioxidative activities of both gelatins increased with coincidental increase in ??-amino group content as the extraction temperature increased (P?<?0.05). The BTS gelatin generally exhibited the higher antioxidative activities, compared with the BBS gelatin (P?<?0.05). Gelatin extracted at 60?°C showed the highest interfacial properties, while those extracted at higher temperature (75?°C) had enhanced antioxidative activities. Extraction temperature may therefore be regulated to maximize applications.  相似文献   

13.
方园  崔楠  代银银  刘素稳  常学东 《食品科学》2021,42(11):130-136
山楂果胶作为一种纯天然的食品添加剂,在食品生产和加工中起着重要作用。本实验采用热风干燥和冷冻干燥两种不同的干燥方法以及研磨、剪切、气流3 种不同的粉碎方法来处理山楂,得到6 种山楂粉,进而对山楂粉热特性进行分析,并以山楂粉为原料进行山楂果胶的提取,同时通过半乳糖醛酸质量分数、总糖质量分数、酯化度测定和傅里叶变换红外光谱、X射线衍射、流变学分析对不同方法制备的山楂果胶理化特性进行比较。结果表明:不同处理条件的山楂粉热特性并未表现出明显差异,冷冻干燥组果胶得率和半乳糖醛酸质量分数均高于热风干燥组。同种干燥方法不同粉碎方法对山楂果胶的理化性质影响总体差异不显著(P>0.05),同种粉碎方法不同干燥方法处理下,冷冻干燥组的各项理化性质显著优于热风干燥组(P<0.05)。本实验可为实际生产山楂果胶产品提供理论参考。  相似文献   

14.
系统研究了不同干燥方式(热风干燥,真空冷冻干燥和喷雾干燥)对明胶性质的影响,包括得率、色差、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electrophoresis,SDS-PAGE)、凝胶强度、凝胶持水力、疏水性以及傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)。结果表明,由于贴壁行为和涡旋分离损失的影响,使得喷雾干燥明胶的得率明显较低(P<0.05)。喷雾干燥和真空冷冻干燥可减轻不良色泽的产生,并且降低干燥过程中明胶的氧化和降解,保留更多的高分子亚基,进而增加了明胶的凝胶强度和凝胶持水力。此外,喷雾干燥的明胶由于疏水基团的暴露以及较多的亚基组分可能含有更多的疏水基团,显示出最高的疏水性(P<0.05),冷冻干燥的明胶次之,热风干燥的明胶最低。红外结果表明,热风干燥和真空冷冻干燥破坏了明胶的构象,而喷雾干燥更有利于明胶在凝胶过程中,形成类三螺旋结构。该文可为绿色明胶的干燥方法和工业化应用提供理论依据和指导意义。  相似文献   

15.
Lentil protein isolate (LPI) extract was converted into powder by freeze drying, spray drying and vacuum drying. Differences in particle size distribution, protein subunit composition and colour and surface morphology were observed amongst the three drying methods. Spray and freeze-dried LPI powders exhibited higher solubility (81% and 78%, respectively) compared to vacuum dried powders (50%). The spray dried powders showed a low water absorption capacity (0.43 ± 0.02 g/g) compared to freeze (0.48 ± 0.02 g/g) and vacuum-dried (0.47 ± 0.01 g/g) LPI powders. Spray and freeze-dried powders displayed better gelation ability and higher gel strength, compared to vacuum-dried powder. Both spray and freeze-dried gels showed typical viscoelastic gel characteristics, with G′ dominating over G″ and very low loss tangent. The holding time required for gelation of vacuum dried powder at 90 °C was significantly longer, compared to spray and freeze dried powders. Hence, drying methods used for preparation of lentil protein isolate powders can affect physicochemical and associated functional properties.  相似文献   

16.
Dried egg white is extensively used as a food ingredient due to its unique functional properties and extensive shelf life. This study investigated the effect of drying methods and storage conditions on the color and gelling properties of dried egg white. Egg white was dried with two drying methods; freeze drying and hot-air drying, then stored at 25 and 40°C for 4 months. The result showed that the color of hot-air-dried egg white, especially after storage at 40°C, was darker yellow than for freeze-dried egg whites. The gelling properties of both samples were altered during storage, however, substantial changes in the gelling properties were found in the gel made from stored hot-air-dried egg white. A decrease in the enthalpy of protein denaturation that indicated a partially unfolded protein conformation, an increase in exposed sulfhydryl and a decrease in the total sulfhydryl contents were found, especially in stored samples of hot-air-dried egg whites. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern of proteins in the stored samples showed protein aggregation, and this was related to the increased glass transition temperature. This study revealed that drying egg white using hot-air drying and storage especially at high temperature induced changes in their color and protein conformation. These have contributed to protein aggregation which affected dried egg white’s gel properties.  相似文献   

17.
ABSTRACT:  The objective of this study was to compare water gel desserts from various gelatins using instrumental measurements. The puncture test and texture profile analysis (TPA) with compression were determined at 25% and 75% deformation; the melting properties were determined rheologically by monitoring the change of storage modulus (G') with increasing temperature. The measurements with 25% deformation were always nondestructive, while measurements with 75% deformation were mostly destructive. Desserts made from Alaska pollock gelatin (AG) or gelatin mixtures containing AG were more resistant to the destruction caused by the large deformation than tilapia gelatin and pork gelatins. In addition, the gel dessert made from AG melted at a lower temperature than those from tilapia skin gelatin and pork gelatins, while desserts made from gelatin mixtures reflected the melting properties of the separate gelatins.  相似文献   

18.
The characteristics and functional properties of gelatin from skin cuttlefish (Sepia officinalis) were investigated and compared to those of halal bovine gelatin (HBG). The gelatin extraction efficiency was improved by an acid-swelling process in the presence of smooth hound crude acid protease extract (SHCAP). The yields of gelatins from cuttlefish skin after 48 h with acid and with crude acid protease (15 units/g alkaline-treated skin) were 2.21% and 7.84%, respectively. The gelatin from skin cuttlefish had high protein (91.35%) but low fat (0.28%) contents. Compared to HBG, the cuttlefish-skin gelatin (CSG) has different amino acids composition than halal bovine gelatin. CSG contained slightly low hydroxyproline and proline (180‰) than HBG (219‰), whereas the content of serine was higher (49‰ versus 29‰). The gel strength of the gelatin gel from CSG (181 g) was lower than that of HBG (259 g) (p < 0.05) possibly due to lower hydroxyproline content. Cuttlefish-skin gelatin exhibited a similar emulsifying activity but greater emulsifying and foam stability than the halal bovine gelatin (p < 0.05). Foam formation ability, foam stability and water-holding capacity of CSG were slightly lower than those of the HBG, but fat-binding capacity was higher in the cuttlefish gelatin.  相似文献   

19.
ABSTRACT:  The objective of this work was to compare the physiochemical and rheological properties of Alaska pollock skin gelatin (AG) to those obtained for tilapia and pork skin gelatins. Results were also obtained for some mixed gels containing AG and pork skin gelatin, or AG and tilapia gelatin. AG contained about 7% hydroxyproline (Hyp), which was lower than that of tilapia (∼11%) or pork skin gelatin (∼13%). Most of the protein fractions in AG were α chain, β chain, and other oligomers. The gel strength of AG was 98 gram-force at 10 °C, and increased at a greater rate than other gelatins with decreasing temperature. The gel melting point of AG was the lowest with the oil-drop method, while the viscosity of AG was the highest of the samples studied. The rheological properties of gelatins were determined using small amplitude oscillatory shear testing. G' was nearly independent of frequency for most of the gelatin gels, but AG gels showed a slight dependence on G' and a minimum in G". G' was found to be a power law function of concentration for all gelatins used: G'= k × Cn. In rheological measurements, AG also showed the lowest gel melting temperature and sharpest melting region. Increasing gelatin concentration resulted in a higher melting temperature and a broader melting region for all gelatin gels. For both the AG-pork and AG-tilapia mixed gels, the gel melting temperatures decreased and melting regions narrowed as the AG fraction was increased.  相似文献   

20.
Gelatin was extracted from the skin of splendid squid (Loligo formosana) at different temperatures (50, 60, 70 and 80 °C) with extraction yield of 8.8%, 21.8%, 28.2%, and 45.3% (dry weight basis) for G50, G60, G70 and G80, respectively. Gelatin from the skin of splendid squid had a high protein content (∼90%) with low moisture (8.63–11.09%), fat (0.22–0.31%) and ash contents (0.17–0.68%). Gelatin extracted at higher temperature (G80) had a relatively higher free amino group content than gelatin extracted at lower temperatures (G50, G60 and G70) (P < 0.05). All gelatins contained α- and β-chains as the predominant components. Amino acid analysis of gelatin revealed the high proline and hydroxyproline contents for G50 and G60. FTIR spectra of obtained gelatins revealed the significant loss of molecular order of the triple-helix. The gel strength of gelatin extracted at lower temperature (G50) was higher than that of gelatins extracted at higher temperatures including G60, G70 and G80, respectively. The net charge of G50, G60, G70 and G80 became zero at pHs of 6.84, 5.94, 5.49, and 4.86, respectively, as determined by zeta potential titration. Gelatin extracted at higher temperature (G80) had the lower L* value but higher a* and b* values, compared with those extracted at lower temperatures (P < 0.05). Emulsion activity index decreased, whilst emulsion stability index, foam expansion and stability increased as the concentration (1–3%) increased (P < 0.05). Those properties were governed by extraction temperatures of gelatin. Thus gelatin can be successfully extracted from splendid squid skin using the appropriate extraction temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号