共查询到18条相似文献,搜索用时 46 毫秒
1.
高强Q460钢高温冷却后力学性能研究 总被引:1,自引:0,他引:1
为了评估高强Q460钢高温冷却后的力学性能,采用电炉对高强Q460钢进行加热升温,再采用自然冷却或浸水冷却方式冷却,然后进行拉伸试验,获得了高温冷却后高强Q460钢的应力-应变关系曲线、屈服强度、极限强度、弹性模量和极限伸长率.将高温冷却后高强Q460钢和普通Q235钢的屈服强度、极限强度和弹性模量进行对比.结果表明:高温后高强Q460钢力学性能与常温下力学性能相比有所变化,尤其是当温度超过700℃时,变化基本较大;700℃后,不同冷却方式对高强Q460钢极限强度和极限伸长率影响较大,浸水冷却后钢材的极限强度明显高于自然冷却后钢材的极限强度,而浸水冷却后钢材的极限伸长率则明显低于自然冷却后钢材的极限伸长率;高强Q460钢弹性模量和屈服强度受冷却方式的影响较小;高温冷却后高强Q460钢与普通Q235钢屈服强度、极限强度和弹性模量折减系数存在差异. 相似文献
2.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。 相似文献
3.
为研究高强耐火钢在高温下的力学性能,通过国产Q345FR、Q420FR、Q460FR耐火钢的高温下稳态拉伸试验和热膨胀变形试验,得到了20~800℃下各等级耐火钢的破坏模式、应力-应变关系曲线、力学性能参数及热膨胀系数,并与普通结构钢高温性能以及欧洲、中国的抗火设计规范的相关规定进行了对比。研究结果表明:在温度低于350~400℃时,国产高强耐火钢屈服强度、抗拉强度高于常温的,当温度超过400℃后,屈服强度、抗拉强度开始快速下降;欧洲规范EC3中给出的高温下普通结构钢的弹性模量、强度计算公式不适用于高强度耐火钢;温度低于450℃时,耐火钢试验值与GB 51249—2017《建筑钢结构防火技术规范》中普通钢取值更吻合;温度高于450℃时,耐火钢试验值与规范GB 51249—2017中耐火钢取值更吻合。针对Q345FR、Q420FR、Q460FR高强耐火钢,提出了高温下弹性模量、屈服强度、抗拉强度变化系数拟合公式,可用于耐火钢结构抗火设计。 相似文献
4.
为了研究温度20~700℃下国产Q690D-QT高强钢的拉伸力学性能,开展了系列高温准静态和动态拉伸力学性能试验。试验结果表明:准静态拉伸下随温度上升,弹性模量和名义屈服强度f0.2、f0.5(其中f0.2取为应力-应变曲线和应变0.2%比例偏移线交点的应力,f0.5取应变为0.5%时对应的应力)不断下降,而名义屈服强度f1.0、f1.5、f2.0(其中f1.0、f1.5、f2.0分别取应变为1.0%、1.5%和2.0%时对应的应力)和抗拉强度在200~300℃间先略有上升,后不断下降;动态拉伸下屈服强度在室温下应变率效应不明显,在700℃时应变率效应明显。进一步地,采用多项式拟合给出了准静态弹性模量、屈服强度和抗拉强度的高温折减系数预测公式;并标定了可有效描述温度20~700℃、应变率1 000 s-1下Q690D-QT高强钢拉伸力学性能的Joh... 相似文献
5.
6.
7.
为获得国产高强度Q960钢高温下蠕变应变,对Q960钢进行高温拉伸蠕变试验,得到不同温度和应力水平下的蠕变应变-时间曲线,基于试验数据,提出适用于Q960钢结构抗火分析的蠕变模型。采用有限元模型分析蠕变效应对Q960钢柱抗火性能的影响,得到标准升温条件下无防火保护Q960钢柱的临界温度,并与《建筑钢结构防火技术规范》(GB 51249)计算的结果进行对比。研究表明:当温度超过600℃时,Q960钢材具有明显的蠕变效应,且温度越高,断裂前蠕变总变形越大;蠕变效应会显著降低Q960钢柱的临界温度和耐火极限;《建筑钢结构防火技术规范》(GB 51249)中的临界温度法不适用于Q960钢柱,当荷载比小于0.75时,计算结果不安全,而荷载比大于0.75时,计算结果偏于保守。 相似文献
8.
9.
高温后聚丙烯纤维高强混凝土力学性能试验研究 总被引:1,自引:0,他引:1
通过对高温后聚丙烯纤维高强混凝土和素高强混凝土力学性能的试验研究,探讨了聚丙烯纤维高强混凝土的抗压强度、抗拉强度和抗折强度在不同温度下的变化规律,分析了聚丙烯纤维高强混凝土的抗爆裂机理.研究结果表明,聚丙烯纤维高强混凝土的抗压强度、抗拉强度和抗折强度随温度的升高而降低,在400℃以内降低幅度较小,400℃以后显著降低.聚丙烯纤维能够显著改善高强混凝土的抗爆裂性能. 相似文献
10.
高温后HRBF500细晶粒钢筋力学性能试验研究 总被引:4,自引:1,他引:3
试验研究了16组共48根HRBF500细晶粒钢筋在常温和高温冷却作用后(5种温度、3种冷却方式)的力学性能,得到了不同高温冷却作用后细晶粒钢筋的应力-应变关系,分析了屈服强度、抗拉强度、弹性模量、断后伸长率、均匀伸长率、截面收缩率等的变化规律。试验表明:温度作用相对较低时(300℃、400℃、600℃),细晶粒钢筋力学性能变化不明显;温度作用相对较高时(700℃、900℃),细晶粒钢筋各项力学指标逐渐退化。根据试验结果,经回归分析建议了高温后细晶粒钢筋屈服强度、抗拉强度、弹性模量、断后伸长率的计算公式。研究成果可作为火灾后采用HRBF500级细晶粒钢筋混凝土结构的损伤评估的依据。图12表6参7 相似文献
11.
12.
通过国产Q690高强钢的稳态试验研究,得到20~800℃下钢材的试验现象、应力-应变关系曲线、力学性能参数,并将所得试验结果与相关规范和已有研究进行比较。研究发现:随温度升高,试验后钢材表面及断口形貌区别明显,应力-应变关系曲线的初始线弹性段缩短、极限应力对应应变减小、下降段趋于平缓;弹性模量、屈服强度和抗拉强度等力学性能指标随温度升高而降低;而断后伸长率在200~500℃时相较于常温值有小幅度下降,600℃后明显增加;当温度低于500℃时,不同名义屈服强度折减系数之间存在较大差异。目前已有研究建议的钢材高温力学性能模型并不适用于Q690高强钢,通过试验结果拟合得到了高温下Q690钢力学性能模型,以期用于Q690钢材的钢结构抗火安全评估与设计。 相似文献
13.
钛-钢复合钢是一种拥有良好力学性能和耐腐蚀性能的双金属材料。为了准确评估火灾后钛-钢复合钢的剩余服役能力,对高温后不同冷却条件下钛-钢复合钢的力学性能进行了试验研究。试验结果表明:经过高温和冷却处理后,钛-钢复合钢的复合界面保持有效连接;在拉伸试验过程中,颈缩之前复层TA1与基层Q235保持协同变形;过火温度和冷却方式对钛-钢复合钢断裂模式有较大影响,根据基层和复层断裂顺序分为基层和复层基本同时断裂、复层先于基层断裂、基层先于复层断裂等3种破坏模式。与已有其他钢材试验结果的对比分析表明:与不锈钢S30408、S31608不同,钛-钢复合钢的弹性模量基本不受过火温度和冷却方式影响;高温后自然冷却条件下,钛-钢复合钢屈服应力显著高于常温的,而极限应力基本不受过火温度影响;水冷条件下,过火温度不超过600℃时,过火温度对钛-钢复合钢力学性能基本没有影响,而过火温度超过600℃后,随着过火温度升高钛-钢复合钢屈服应力和极限应力显著提高,这与其他钢材略有区别。基于试验结果拟合了钛-钢复合钢的三段式非线性本构模型,采用模型的预测结果与试验结果吻合较好。 相似文献
14.
Q460高强钢单调与反复加载性能试验研究 总被引:2,自引:0,他引:2
通过对Q460高强钢进行单向拉伸与反复加载下材料性能试验,得到了各试件单调拉伸和反复加载下的应力-应变关系曲线,以及反复加载下的骨架曲线,并将试验结果与文献研究结果进行了对比。试验结果表明:单向拉伸材性试验中,11 mm厚Q460C高强钢板的平均断后伸长率为23.7%,屈强比为0.847; 21 mm厚钢板的平均断后伸长率为30.4%,屈强比为0.792;Q460钢的循环硬化程度比Q345钢明显减弱,主要原因是随着钢材强度的提高,钢材的屈强比增大,钢材的应变强化效应减小。根据钢材反复加载的滞回曲线,提出了Q460高强钢材的应力 应变滞回模型,用该模型计算得到的关系曲线与试验曲线对比,两者吻合较好。 相似文献
15.
通过升温、冷却和拉伸试验,对历经300~900℃高温后的Q690钢材在自然冷却和浸水冷却条件下的力学性能展开试验研究。结果表明:经高温冷却的Q690钢材在不同温度和不同冷却方式下有不同的外观特征;受热温度超过500℃时,高温冷却对Q690钢材的弹性模量影响很小,对其强度和伸长率影响较大;当受热温度不超过700℃时,Q690钢材高温后的强度和伸长率在两种冷却方式下具有基本相同的变化规律;在700~800℃之间,不同冷却方式对Q690钢材高温后强度和伸长率产生影响,且随温度升高差别愈加明显,自然冷却条件下强度降低且伸长率增大,浸水冷却条件下强度增大且伸长率减小。将Q690钢材高温后力学性能与Q235钢材和Q460钢材比较,认为不同强度等级钢材高温后的力学性能差别显著,在自然冷却条件下较高强度钢材(Q690)的强度衰减和延性增长大于较低强度钢材(Q235和Q460)的。根据试验结果,建立了不同冷却条件下的高温后各力学参数与受热温度之间的数学模型,该模型可用于火灾后Q690钢结构的承载能力的评估。 相似文献
16.
为评估火灾后铝合金结构性能,应采用合理的材料本构模型,为此,对建筑用6061-T6、7075-T73铝合金进行了单次和反复受火后力学性能试验(采用自然冷却和消防喷水冷却两种冷却方式)。分析了受火后铝合金应力-应变全曲线、弹性模量、屈服强度、抗拉强度以及延性等相关力学性能指标及其随受火温度的变化。试验结果表明:6061-T6铝合金在经历超过300℃高温后,其力学性能发生明显变化,而对于7075-T73铝合金,相应温度为200℃;不同冷却方式和反复升温-冷却过程对铝合金的力学性能影响较大;拟合了不同冷却方式下6061-T6、7075-T73铝合金单次及反复受火后力学性能的计算式,其结果与试验结果吻合良好。 相似文献
17.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。 相似文献
18.
为研究火灾后钢材承受机械振动、风致振动和车辆振动等动力荷载的疲劳性能,通过升温、自然冷却和疲劳试验,对室温和经历250~750℃高温自然冷却后的40个Q345钢材试样进行轴向拉伸疲劳性能试验研究。结果表明:不同高温自然冷却后Q345钢材疲劳断口的破坏特征存在明显差异,裂纹扩展区和瞬断区的面积随温度升高而发生变化; Q345钢材在室温或经高温自然冷却后的疲劳断口具有典型韧窝组织,受热温度不超过500℃时韧窝组织随温度升高而增多变密,受热温度为750℃时韧窝组织减少、变浅且大小分布不均匀,主要表现为具有撕裂痕迹的类解理破坏;经高温自然冷却后Q345钢材的疲劳寿命随着温度增加而呈先增加后减小的变化趋势,与常温下钢材的疲劳寿命相比,500℃以内时,疲劳寿命随温度升高而增加,最大增幅为277.18%,750℃时疲劳寿命下降了65.27%。根据试验结果,建立不同高温自然冷却后Q345钢材的概率S-N曲线模型,利用该模型可对火灾后Q345钢结构的疲劳性能进行有效评估。 相似文献