首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the dynamic tensile strength of HR-2 (Cr-Ni-Mn-N) stainless steel have been carried out over the initial temperature range of 300 K–1000 K at shock stress of 8 GPa, the corresponding spall strength f and Hugoniot elastic limit HEL are determined from the wave profiles. In the temperature range of 300 K–806 K, f and HEL decrease linearly with increasing temperature T, i.e., f = 5.63-4.32 × 10–3T, HEL = 2.08-1.54 × 10–3T, but when heated to 980 K, HEL increases from 0.84 GPa at 806 K to 0.93 GPa at 980 K and f keeps at an almost fixed value of 2.15 GPa. The TEM analysis on recovery samples identified the existence of intermatallic compound Ni3Al and the carbide Cr23C6 in the sample of 806 K, another intermatallic compound Ni3Ti was found in the sample of 980 K. All these products emerge along crystal boundary. While no such products were found in the samples of 300 K and 650 K.  相似文献   

2.
Experimental data on fracture stress of polycarbonate (PC) with and without various artificial notches have been obtained at atmospheric pressure and a high hydrostatic pressure (400 MPa). The difference in fracture stress, F, between both pressures was directly proportional to the intensity of pressure,P, and was inversely proportional to the stress concentration factor of the notch,K n such that F following the form of the Kaieda-Oguchi formula, F. By using the combined stress concentration factor,K nc, of superposed notch and craze, and by considering the change in elastic modulus due to pressure, the experimental data agreed with the modified Kaieda-Oguchi formula. The stress concentration factor of the craze was calculated by using the Dugdale model.  相似文献   

3.
Tensile tests at 20 C have been carried out on forty-four sapphire whiskers after chemical polishing in hot orthophosphoric acid. The orientations tested were 0001, 11¯20, 10¯10, and 10¯11. The results show that chemical polishing increases the strength of large whiskers by a factor of up to 10, but not the strength of small ones. Good correlation is obtained between fracture strength, f, and whisker diameter,d. The relevant size-strength equations, f=Kd m l n (wherel is gauge length, andK, m, andn are constants depending on whisker orientation), predict strengths in good agreement with the theoretical strength of sapphire at unit-cell dimensions and with the measured strengths of macroscopic flame-polished crystals.The observations are contrasted with those for unpolished sapphire whiskers [1]. They show a transition in the fracture nucleation mechanism of unpolished whiskers at a certain stress.In unpolished, A-type (11¯20 and 10¯10) whiskers, with f<1000 kg/mm2, fracture initiates at surface flaws, and strength is dependent on surface area. But, for whiskers with f>1000 kg/mm2, and for all polished whiskers (both A and C type), fracture is due to dislocation pile-ups or interactions, and strength is dependent only upon diameter. In unpolished, C-type (0001) whiskers, however, with f<800 kg/mm2, fracture initiates at surface flaws which are related to whisker diameter; while, for f> 800 kg/mm2, it occurs at dislocation pile-ups or interactions and is again related to diameter. In contrast, therefore, to A-type whiskers, the strength of C-type whiskers is always diameter-dependent, although there is a clear transition in the size-strength curve at f800 kg/mm2.  相似文献   

4.
The stress exponent of steady state creep,n, and the internal ( i) and effective stresses ( e) have been determined using the strain transient dip test for a series of polycrystalline Al-Mg alloys creep tested at 300° C and compared with previously published data. The internal or dislocation back stress, i, varied with applied stress,, but was insensitive to magnesium content of the alloy, being represented by the empirical equation i=1.084 1.802. Such an applied stress dependence of i can be explained by using an equation for i of the form i (dislocation density)1/2 and published values for the stress dependence of dislocation density. Values of the friction stress, f, derived using the equation e/=(1–c) (1– f/), indicate that f is not dependent on the magnesium content. A constant value of f can best be rationalized by postulating that the creep dislocation structure is relatively insensitive to the magnesium content of the alloy.On leave from Engineering Materials Department, University of Windsor, Windsor, Ontario N9B 3P4, Canada.  相似文献   

5.
The tensile stress relaxation behaviour of hot-drawn low density polyethylene, (LDPE), has been investigated at room temperature at various draw ratios. The drawing was performed at 85° C. The main result was an increase in relaxation rate in the draw direction, especially at low draw ratios when compared to the relaxation behaviour of the isotropic material. This is attributed to a lowering of the internal stress. The position of the relaxation curves along the log time axis was also changed as a result of the drawing, corresponding to a shift to shorter times. The activation volume, , varied with the initial effective stress 0 * according to 0 * 10kT, where 0 * =0i, is the difference between the applied initial stress, 0, and the internal stress i. This result supports earlier findings relating to similarities in the stress relaxation behaviour of different solids.  相似文献   

6.
The article presents the results of long-time strength tests of the casting pyroceram SO115M at room temperature by the method of three-point bending. We obtained the power dependence of the time to failure f on the applied load : f –11.7.Translated from Problemy Prochnosti, No. 1, pp. 102–104, January, 1996.  相似文献   

7.
The behavior of the low-frequency optical conductivity reg() in superconducting cuprates is, at the present, an open and interesting issue. In particular, since the zero-temperature and zero-frequency limit of reg() attains a value much larger than the universal value expected within a self-consistent T-matrix calculation, an intriguing possibility is that the collective mode can also contribute to reg(). By taking into account the effect of dissipation on the collective mode in a d-wave superconductor, we evaluate the phase-fluctuation contribution to reg(0) within the formalism of the phase-only action. We show that even though the collective mode contributes to reg() at finite frequencies, approaching the zero-temperature and zero-frequency regime the corrections at reg() due to phase fluctuations vanish.  相似文献   

8.
A simple method for evaluating stress intensity factor, crack velocity (K, V) diagrams is described. The method is evaluated for the glass/water system and is shown to generate data that are entirely consistent with data obtained on the same system using other techniques. The method is applied to the alumina/water system and the K, V diagrams are used to predict times to failure () and effects of strain-rate on strength ( f). The calculated and f, are in excellent agreement with available data.  相似文献   

9.
The fatigue behaviour of Ni49Fe29P14B6Si2, Ni48Fe29P14B6Al3 and Pd77.5Cu6Si16.5 metallic glasses is examined. In the finite lifetime regime the relationship between stress amplitude ( a), fracture stress ( f), mean stress ( m) and cycles to failure (N f) is a=A( fm) (2N f) b , whereA andb are 16.9 and –0.40 respectively for reduced gauge section Ni49 strips (for m 140 kg mm–2) and 27.0 and –0.44 for Pd base wires. These results are unusual in thatA 1. Consequently, a sharp discontinuity exists near a( f m) –1. In a simple tensile test failure occurs at f(=y) and 2Nf=1; for peak stresses only a percent or so less than f the sample will withstand hundreds of cycles of stress. For uniform cross-section glassy metal filaments, a fatigue limit is observed at stress ratios ( a/ f) in the vicinity of 0.07 to 0.15. The fatigue limit for reduced section specimens is a factor of 2 higher. Fatigue failure of the Ni-Fe strips may occur under partially or fully plane stress or plane strain conditions, depending on sample thickness and stress. Final failure of the Pd77.5Cu6Si16.5 wires always occurs by general yielding of the remaining section.  相似文献   

10.
The a.c. electrical conductivity ( ac), thermoelectric power () and dielectric constant () of antiferromagnetic NiWO4 are presented. ac and have been measured in the temperature range 300 to 1000 K and in the temperature range 600 to 1000 K. Conductivity data are interpreted in the light of band theory of solids. The compound obeys the exponential law of conductivity = 0 exp (–W/kT). Activation energy has been estimated as 0.75eV. The conductivity result is summarized in the following equation =2.86 exp (–0.75 eV/kT)–1 cm–1 in the intrinsic region. The material is p-type below 660 K and above 950 K, and is n-type between 660 and 950 K.  相似文献   

11.
A new method is suggested for the evaluation of the true activation enthalpy for alloys where the strain rate of the superplastic flow varies with a power of an effective stress e = -o, where and o are the applied stress and a threshold stress, respectively. Some earlier results concerning superplastic AlMgZnCu alloys containing chromium and in which a strongly temperature-dependent threshold stress can be revealed, are reanalysed. The results are in good agreement with the previous ones. It has been shown further that for the alloys investigated the true activation energy increases with increasing chromium content.  相似文献   

12.
The residual thermal stress field in the pull-out specimen is calculated in the case of a high properties thermoset system (carbon-bismaleimide). The calculation is performed within the framework of the linear theory of elasticity by means of a finite element method. The specimen is modelled as a three-phase composite (holder-fibre-matrix). The meniscus which forms at the fibre entry is taken into account in order to provide a realistic stress concentration. The latter is far higher than the matrix strength. Evidence that fibre debonding propagates from the fibre end during cooling is then produced.Nomenclature T thermal load - L e embedded length - r f fibre radius - c curvature radius of the meniscus (fibre entry) - r c radial dimension of the finite element mesh - E m,E h matrix and holder moduli - E A,E T fibre axial and transverse moduli - m, h matrix and holder thermal expansion coefficients - A, T fibre axial and transverse thermal expansion coefficients - rr, , zz, rz non-zero components of the residual stress field - rr i , im , zz im , rz i stresses at the interface in the matrix (r=r f + ) - rr i , if , zz if , rz i stresses at the interface in the fibre (r=r f) - p1 maximum principal stress - zz f mean axial stress over the fibre section - rupt m matrix strength - u r ,u z non-zero components of the displacement field  相似文献   

13.
The square of the ratio of the abraded bending strength, d, to the unabraded bending strength, , is proposed as a measure of the resistance to crack propagation in ceramic materials. Data for various porcelains, glass-ceramics, and glasses showed that d is essentially constant and that (d/)2 decreased rapidly with increase of the unabraded strength.  相似文献   

14.
The two-site model is developed for the analysis of stress relaxation data. It is shown that the product of d In (– )/d and (- i) is constant where is the applied stress, i is the (deformation-induced) internal stress and = d/dt. The quantity d In ( )/d is often presented in the literature as the (experimental) activation volume, and there are many examples in which the above relationship with (- i) holds true. This is in apparent contradiction to the arguments that lead to the association of the quantity d In (– )/d with the activation volume, since these normally start with the premise that the activation volume is independent of stress. In the modified theory presented here the source of this anomaly is apparent. Similar anomalies arise in the estimation of activation volume from creep or constant strain rate tests and these are also examined from the standpoint of the site model theory. In the derivation presented here full account is taken of the site population distribution and this is the major difference compared to most other analyses. The predicted behaviour is identical to that obtained with the standard linear solid. Consideration is also given to the orientation-dependence of stress-aided activation.  相似文献   

15.
We irradiated Cd0.2Hg0.8Te samples at room temperature in the plastic range, with a CO2 laser beam the wavelength of which (=10 500 nm) is 20% longer than the absorption threshold. We observed a positive photoplastic effect (PPE) of the order PPE/4 to 5%.  相似文献   

16.
Conclusions For an equiprobable distribution of the position of the beginning of interval Ti on the time axis, m manifests itself as an uncorrelated random error.If the pulse duration is negligible in comparison with the time interval between adjacent pulses, the ME of the error m is equal to zero for AFC's with uniform or nonuniform pulse sequences.The RMSD of the error m varies with Ti, assuming a number of extremum values [m]max. For the same values of Ti andf, [mn]max exceeds [mu]max by a factor of not more than 2. If the maximum allowable values of the RMSD of the methodic error m are assigned on the basis of experimental conditions, the minimum allowable measurement time of the secondary instrument which receives the AFC signal can be found by means of (7) and (11).Translated from Izmeritel'naya Tekhnika, No. 12, pp. 53–55, December, 1972.  相似文献   

17.
An energy eigenvalue equation for a quasi-particle is derived, starting with the Heisenberg equation of motion for an annihilation operator. An elementary derivation of the Fermi liquid model having a sharply defined Fermi surface in thek-space is given, starting with a realistic model of a metal including the Coulomb interaction amongand between electrons and lattice-ions. The Ginzburg-Landau wave function (r), where represents the superconducting pairon (Cooper-pair) state, is shown to be connected with the one-pairon density operatorn by (r) = r¦n 1/2¦. A close analogy between supercurrent and laser is indicated.On sabbatical leave from Department of Physics and Astronomy, State University of New York at Buffalo, Buffalo, New York.  相似文献   

18.
This review describes fabrication processes for aligned fibre and random fibre carbonreinforced cement and links important process parameters with composite theory. The way in which the material fits into the general framework of crack constraint and matrix cracking theories is discussed. A broad survey is made of the mechanical properties, durability and dimensional stability of a variety of carbon-reinforced cement composites, and economic constraints on potential applications are considered.List of symbols b breadth of three-point bend specimen - d depth of three-point bend specimen - E c composite Young's modulus - E f fibre Young's modulus - E m matrix Young's modulus - l fibre length - l c fibre critical transfer length - l s specimen span in three-point bend test - m Weibull modulus - r fibre radius - P applied load - V f fibre volume fraction - V m matrix volume fraction - x length of fibre needed to transfer load mu V m - x d crack spacing in a composite with short, aligned fibres - fu fibre ultimate strain - mu matrix ultimate strain - fu fibre ultimate strength - mu matrix ultimate strength - cu composite ultimate strength - MOR modulus of rupture - T tensile strength - interlaminar shear strength - i interfacial shear strength - m matrix work of fracture - F work of fracture  相似文献   

19.
The interfacial properties of a glass-ceramic matrix composite (SiC/CAS) were determined from single-fibre push-out tests using the interfacial test system. The coefficient of friction, , the residual clamping stress, c, and fibre axial residual stress, z , were extracted by fitting the experimental stress versus fibre-end displacement curves using the models of Hsueh, and Kerans and Parthasarathy. Using Hsueh's model, the intrinsic interfacial frictional stress (=c) was found to be 11.1±3.2 MPa, whereas by using Kerans-Parthasarathy's model it was found to be 8.2±1.5 MPa. Comparisons between these models are included, together with a discussion of data analysis techniques.Nomenclature z Axial fibre residual stress (Pa) - * Effective clamping stress (Pa) - c Residual clamping stress (Pa) - p Poisson's effect-induced clamping stress (Pa) - d 0 Debond stress in the absence of residual stresses (Pa) - d Experimental debond stress (Pa) - Compressive applied stress (Pa) - Interfacial shear stress (Pa) - u Fibre-end displacement (m) - h Debond length (m) - r Fibre radius (m) - E f Fibre Young's modulus (Pa) - E m Matrix Young's modulus (Pa) - v f Fibre Poisson's ratio (dimensionless) - v m Matrix Poisson's ratio (dimensionless) - f Fibre volume fraction (dimensionless) - k Parameter (dimensionless) - D Parameter (dimensionless) - Interfacial coefficient of friction (dimensionless) - G i Interface toughness (J m–2) - C m Load-train compliance (m N–1)  相似文献   

20.
The plastic instability approach has been applied to the tensile behaviour of a continuous fibre composite. It is shown that the combination of two components with different strengths and degrees of work-hardening produces a new material with a new degree of work-hardening, which may be determined by the present analysis. Expressions for the elongation at rupture and the strength of a composite have been obtained and the results of the calculation are compared with some experimental data.List of symbols V f volume fraction of fibres in composite - , , true strain of fibre, matrix and composite - s true stress - , , nominal stress on fibre, matrix and composite - *, *, * critical stress of fibre, matrix and composite (ultimate tensile strength) - *, * critical strain of separate fibre and matrix - * critical strain of composite - Q external load - A cross-sectional area - A 0 initial value of area  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号