首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于微通道致冷的大功率LED阵列封装热分析   总被引:2,自引:2,他引:2  
采用微通道致冷技术,设计了大功率LED阵列封装的微通道致冷结构,并应用热分析软件模拟了其热性能,探讨不同鳍片结构尺寸、流速、功率等参数对LED多芯片散热效果的影响.文中提出了采用交错通道以提高LED封装的散热能力,模拟结果显示,交错微通道致冷的封装结构能很好地满足大功率LED阵列的散热需要.  相似文献   

2.
为实现片状结构高重复频率大能量激光放大器的高效热管理,采用有限元分析(FEA)方法,充分考虑增益介质内部非均匀热分布、微通道热沉中的流速、对流扩散等影响因素,引入流-热-固多物理场耦合数值分析模型,对激光放大器热沉进行分析优化,并基于优化结果探讨了不同流速下微通道热沉的散热冷却能力。模拟结果表明:当基底厚度Hb=2 mm、单个微通道高度Hc=4 mm和宽度Wc=0.4 mm、两微通道的间距Ww=0.3 mm时,微通道热沉冷却能力最强,热阻最小;微通道内冷却液流速过大会导致较大的流动压力损失;微通道热沉的平均等效换热系数可达50000 W/(m2·K)。  相似文献   

3.
由于水冷散热器体积小,流体在散热器内流动形式复杂,使散热器设计加工和性能测试在常规条件下有一定局限性。通过建立微通道水冷散热器三维模型,运用ANSYS软件对影响散热器性能的因素(进口水温、环境温度、进口流速)进行了模拟分析,得出了不同条件下芯片工作时的温度场分布,为后续微通道水冷散热器的优化设计提供了理论依据。  相似文献   

4.
针对均匀背景热流条件下的散热问题,构建了类叶状微通道矩形热沉模型,基于构形理论,在给定热沉体积与液冷通道总体积的约束条件下,以热沉最高温度和压降最小化为 目标,以微通道单元数、主通道与分支通道的夹角、主通道与分支通道的管径比为设计变量进行了优化设计.结果表明:通过增加微通道单元数、减小主通道与分支通道的夹角、采用较小的主通道与分支通道之管径比,可以降低热沉的最高温度,但是会增大压降损失.  相似文献   

5.
基于微通道散热的大功率LED阵列的热阻研究   总被引:2,自引:1,他引:1  
采用微通道致冷技术,设计了大功率LED阵列的外部热沉.针对直鳍片微通道结构的散热器,理论分析了影响其热阻的因素,推导了热阻表达式,并对微通道散热器的结构参数进行了优化,指出当通道宽度取某一数值时,散热器的热阻可达到最小.利用MATLAB软件,对LED的热阻与微通道散热器的结构参数和冷却液的压力关系进行了仿真,给出了直观的关系曲线.  相似文献   

6.
单层微通道热沉解决了高热流密度器件冷却问题,但被冷却器件表面存在温差大的缺点,双层微通道热沉由于其独特的结构设计,提高了被冷却表面的温度均匀性。建立了双层热沉的三维流固耦合模型,以恒定泵功为约束条件,热阻为热沉性能评价指标,比较了单层、双层逆向与双层同向热沉性能,结果表明,在泵功0.05 W和热流密度100 W/cm~2时,三种不同形式热沉热阻分别为0.1677k/W、0.1535k/W、0.1895k/W,热沉被冷却表面的最大温差分别为9.76 K、6.06 K、12.34 K,通过比较双层逆向热沉显著改善被冷器件温度均匀性,降低热阻。双层热沉上下通道泵功分配对热沉性能有较大影响,通过优化,分别使双层同向热沉、逆向热沉热阻减小15.83%、9.84%。  相似文献   

7.
赵恒  李波  胡友友  王炜  王振 《激光技术》2017,41(4):566-572
为了提高激励源的热稳定性,保证4kW轴快流CO2激光器的光束质量,采用计算流体动力学的方法,理论分析了激光器激励源热沉的散热机理,对热流密度为106W/m2、面积为16cm2的激励源热沉结构进行了优化设计。结果表明,经过优化之后的热沉其表面的最高温度低于340K,完全能够满足激光器正常工作时激励源核心功率MOSFET对散热指标的要求;同时经过数值模拟得到了带凹槽微通道热沉的优化结构尺寸,分别是微通道凹槽间距P=0.6mm,微通道凹槽倾角θ=45°,微通道凹槽交错距离s=0.1mm,同时当雷诺数Re=546.9时,热沉有最优的散热效果,激光输出功率的稳定度可以控制在±2%以内。此研究为设计具有高效散热能力的微通道热沉提供了理论指导。  相似文献   

8.
一种高功率LED封装的热分析   总被引:15,自引:6,他引:15  
建立了大功率发光二极管(LED)器件的一种封装结构并利用有限元分析软件对其进行了热分析,比较了采用不同材料作为LED芯片热沉的散热性能.最后分析了LED芯片采用chip-on-board技术封装在新型高热导率复合材料散热板上的散热性能.  相似文献   

9.
针对大屏幕液晶电视存在的散热问题,在综合考虑实际工况和MEMS技术基础上,设计了集成微通道的模拟液晶电视LED背光组件芯片.采用ANYSIS软件,对不采用微通道散热和采用40 μm微通道流速为0.000 1 m/s散热时的效果进行了数值模拟.在此基础上改变入口流速,模拟了不同入口流速对散热性能的影响.数值模拟结果证明,该方案设计具有高度的可靠性和可行性,可以在未来的电视设计技术中取得应用.  相似文献   

10.
范贤光  黄江尧  许英杰 《半导体光电》2020,41(2):232-236, 241
针对电子器件的散热问题,提出了四种具有对称和等距凹槽的微通道,并通过三维数值模拟,研究了不同雷诺数下凹槽形状及布局对微通道性能的影响。结果表明:在给定的雷诺数范围内,圆形凹槽的传热性能仅次于三角凹槽,而梯形和矩形凹槽的传热性能较差。三角凹槽压降最大,其次是圆形,而梯形和矩形凹槽压降差异较小;同种形状不同布局的凹槽,压降几乎一致,这表明通过改变凹槽布局来提高性能不会产生额外压降损失。综合换热和压降特性,微通道热性能系数先增后减,故三角凹槽在雷诺数为600时获得最优热性能,而在雷诺数为900时等距圆形凹槽的热性能超过三角凹槽。  相似文献   

11.
随着经济快速发展及人民生活水平的提高,空调普及率逐年提高其能耗也在不断增长,空调余热量的回收显得格外重要。为解决此问题,提出了将热管热泵低温热能回收机组应用于空调新风机组,充分利用建筑物的排风预热新风,从而提高新风机组入口的新风温度,并从经济性、节能性及健康性等方面进行分析,得出了热管热泵低温热能回收机组运行的可行性。  相似文献   

12.
随着人民生活水平的提高,空调普及率逐年提高其能耗也在不断增长,解决此问题,提出了将热管热泵低温热能回收机组应用于空调新风机组,充分利用建筑物的排风预热新风,从而提高新风机组入口的新风温度,并在其初投资和成本回收、节能性等方面进行分析,得出了热管热泵低温热能回收机组运行的经济合理性。  相似文献   

13.
14.
通过实验,研究了在空调系统中采用热管热泵低温热能回收装置的经济性及可行性。  相似文献   

15.
万忠民  刘伟  张亮  明廷臻   《电子器件》2007,30(6):2197-2200
提出了微小型平板LHP来实现高热流密度电子器件的散热,分析了LHP的工作原理以及运用于电子器件散热的优点.建立了蒸发器多孔芯,金属壁面以及工质汽、液空间区域的耦合数学模型,并运用SIMPLE算法进行求解.数值结果表明,微小型平板LHP蒸发器具有较高热流的散热能力,加热表面的温度水平较低,均温性较好,有利于电子器件的散热.提出微小型平板LHP存在侧壁效应传热极限,由于该极限的存在,系统传热能力在17.5×104 W·m-2左右.  相似文献   

16.
针对土壤热物性参数与热泵运行模式对地埋管换热量的影响进行分析,通过非稳态数值计算方法求解U型垂直埋管周围非稳态温度场的方法,提出按全年运行模拟的平均值作为地埋管每延米换热量的计算方法。并根据模拟结果,确定影响地埋管单位换热量的主要因素。为类似地源热泵系统的优化设计提供一定的参考。  相似文献   

17.
电子设备在工作过程中,绝大多数元器件都要释放热量,而热量过大,会影响设备的正常工作,甚至会损坏电子元器件。因此,我们应考虑设备的散热措施,使设备尽可能在其温度允许的范围内工作。  相似文献   

18.
全热交换器作为一种无需开窗通风的主要通风方式已经慢慢地被人们所接受.全热交换器的芯体具有能量交换功能,可以降低空调的使用效能,作为一种节能产品被更广泛使用.对平行式芯体的全热交换器和导轨式芯体的全热交换器进行流体仿真,结果表明:在全热交换器相同外形尺寸、风机安装尺寸的前提下,平行式芯体的全热交换器换热效果在温度换热效率以及空气流动方面优于导轨式芯体的全热交换器,其原因在于平行式换热芯体的相对空气流动时间更长,以及其整体布置更加合理.  相似文献   

19.
LED筒灯复合结构热管散热器的数值模拟   总被引:2,自引:2,他引:0  
孙磊  张红  许辉 《半导体光电》2011,32(2):224-227
为解决LED筒灯使用单纯自然对流散热扩散热阻过大、温度分布不均的问题,提出一种基于平板热管和热虹吸管的复合结构热管散热器,并用数值模拟的方法研究了热功率、翅片高度、翅片数目、辐射换热对该散热器性能的影响。模拟结果表明应用于LED筒灯的复合结构热管散热器的热阻随着热功率的增加而减小,翅片高度和翅片数目存在一个最优值,使得散热器温度和热阻最小,自然对流情况下不可忽视辐射换热的作用。  相似文献   

20.
主要介绍了热管换热器在机房机柜散热中的应用及工作原理,进行简单计算并比较了热管换热器与空调系统的能耗情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号