首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The eccentric electrophoretic motion of a spherical particle in an aqueous electrolyte solution in circular cylindrical microchannels is studied in this paper. The objective is to investigate the influences of separation distance and channel size on particle motion. A theoretical model is developed to describe the electric field, the flow field and the particle motion. A finite element based direct numerical simulation method is employed to solve the model. Numerical results show that, when the particle is eccentrically positioned in the channel, the electric field and the flow field are not symmetric, and the strongest electric field and the highest flow velocity occur in the small gap region. It is shown that the rotational velocity of the particle increases with the decrease of the separation distance. With the decrease of the separation distance, the translational velocity increases in a smaller channel; while it decreases first and then increases in a relatively large channel. When a particle moves eccentrically at a smaller separation distance from the channel wall, both the translational velocity and the rotational velocity increase with the decrease of the channel size.  相似文献   

2.
Magnetic particle dosing and size separation in a microfluidic channel   总被引:1,自引:0,他引:1  
Separation of functional magnetic particles or magnetically labeled entities is a key feature for bioanalytical or biomedical applications and therefore also an important component of lab-on-a-chip devices for biological applications. We present a novel integrated microfluidic magnetic bead manipulation device, comprising dosing of magnetic particles, controlled release and subsequent magnetophoretic size separation with high resolution. The system is designed to meet the requirements of specific bioassays, in particular of on-chip agglutination assays for the detection of rare analytes by particle coupling as doublets. Integrated soft-magnetic microtips with different shapes provide the magnetic driving force of the bead manipulation protocol. The magnetic tips that serve as field concentrators of an external electromagnetic field, are positioned in close contact to a microfluidic channel in order to generate high magnetic actuation forces. Mixtures of 1.0 μm and 2.8 μm superparamagnetic beads have been used to characterize the system. Magnetophoretic size separation with high resolution was performed in static conditions and in continuous flow mode. In particular, we could demonstrate the separation of 1.0 μm single beads and doublets in a sample flow.  相似文献   

3.
设计并制造了一种带有惯性聚焦结构的介电泳微流控芯片,以实现不同介电性质的粒子连续分离.采用MEMS工艺制作了介电泳微流控芯片:通道入口侧壁设置一对梯形结构使经过的粒子受惯性升力的作用聚焦到通道两侧;通道底部光刻一组夹角为90°的倾斜叉指电极产生非均匀电场,利用介电泳力和流体曳力的合力使通道两侧不同的粒子发生角度不同的偏转进入不同通道,从而实现分离.将酵母菌细胞和聚苯乙烯小球作为实验样本,分析了流速和交流电压对分离的影响,确定了二者分离的最优条件并进行分离.实验结果表明,将电导率为20μS/cm的样本溶液以5μL/min的流速注入到通道中,施加6 Vp-p、10 kHz的正弦信号,酵母菌细胞沿电极运动至夹角处后沿通道中心排出,聚苯乙烯小球沿通道两侧排出,成功实现分离,平均分离效率达92.8%、平均分离纯度达90.7%.  相似文献   

4.
A flexible strategy for the on-demand control of the particle enrichment and positioning in a microfluidic channel is proposed and demonstrated by the use of a locally controlled floating metal electrode attached to the channel bottom wall. The channel is subjected to an axially acting global DC electric field, but the degree of charge polarization of the floating electrode is governed largely by a local control of the voltage applied to two micron-sized control electrodes (CEs) on either side of the floating electrode (FE). This strategy allows an independent tuning of the electrokinetic phenomena engendered by the floating electrode regardless of the global electric field across the channel, thus making the method for particle manipulation far more versatile and flexible. In contrast to a dielectric microchannel wall possessing a nearly uniform surface charge (or zeta potential), the patterned metal strip (floating electrode) is polarized under electric field resulting in a non-uniform distribution of the induced surface charge with a zero net surface charge, and accordingly induced-charge electro-osmotic (ICEO) flow. The ICEO flow can be regulated by the control electric field through tuning the magnitude and polarity of the voltage applied to the CEs, which in turn affects both the hydrodynamic field as well as the particle motion. By controlling the control electric field, on-demand control of the particle enrichment and its position inside a microfluidic channel has been experimentally demonstrated.  相似文献   

5.
Particle and cell separations are critical to chemical and biomedical analyses. This study demonstrates a continuous-flow electrokinetic separation of particles and cells in a serpentine microchannel through curvature-induced dielectrophoresis. The separation arises from the particle size-dependent cross-stream dielectrophoretic deflection that is generated by the inherent electric field gradients within channel turns. Through the use of a sheath flow to focus the particle mixture, we implement a continuous separation of 1 and 5 μm polystyrene particles in a serpentine microchannel under a 15 kV/m DC electric field. The effects of the applied DC voltages and the serpentine length on the separation performance are examined. The same channel is also demonstrated to separate yeast cells (range in diameter between 4 and 8 μm) from 3 μm particles under an electric field as low as 10 kV/m. The observed focusing and separation processes for particles and cells in the serpentine microchannel are reasonably predicted by a numerical model.  相似文献   

6.
This study describes an analytical model and experimental verifications of transport of non-magnetic spherical microparticles in ferrofluids in a microfluidic system that consists of a microchannel and a permanent magnet. The permanent magnet produces a spatially non-uniform magnetic field that gives rise to a magnetic buoyancy force on particles within ferrofluid-filled microchannel. We obtained trajectories of particles in the microchannel by (1) calculating magnetic buoyancy force through the use of an analytical expression of magnetic field distributions and a nonlinear magnetization model of ferrofluids, (2) deriving governing equations of motion for particles through the use of analytical expressions of dominant magnetic buoyancy and hydrodynamic viscous drag forces, (3) solving equations of motion for particles in laminar flow conditions. We studied effects of particle size and flow rate in the microchannel on the trajectories of particles. The analysis indicated that particles were increasingly deflected in the direction that was perpendicular to the flow when size of particles increased, or when flow rate in the microchannel decreased. We also studied ??wall effect?? on the trajectories of particles in the microchannel when surfaces of particles were in contact with channel wall. Experimentally obtained trajectories of particles were used to confirm the validity of our analytical results. We believe this study forms the theoretical foundation for size-based particle (both synthetic and biological) separation in ferrofluids in a microfluidic device. The simplicity and versatility of our analytical model make it useful for quick optimizations of future separation devices as the model takes into account important design parameters including particle size, property of ferrofluids, magnetic field distribution, dimension of microchannel, and fluid flow rate.  相似文献   

7.
The importance of electrokinetics in microfluidic technology has been growing owing to its versatility and simplicity in fabrication, implementation, and handling. Alternating-current electroosmosis (ACEO), which is the motion of fluid due to the ion movement by an interaction between AC electric field and an electrical double layer on the electrode surface, has a potential for a particle concentration method to detecti rare samples flowing in a microchannel. This study investigates an improved ACEO-based particle concentration by cascade electrokinetic approach. Flow field induced by ACEO and accumulation behavior of particles were parametrically measured to discuss the concentrating mechanism. The accumulation of particles by ACEO can be explained by a balance between the attenuating electroosmotic flow to transport particles and the inherent diffusive motion of the particles, which is hindered due to the near-wall location. Although a parallel double-gap electrode geometry enables particles to be collected at the center of electrode very sharply, it has scattering zones with accumulated particles at sidewalls of the channel. This drawback can be overcome by applying sheath flow or introducing cascade electrode pattern upstream of the focusing zone. As a result, total concentration efficiency was 98.4 % for all the particles flowing in the cascade device. The resultant concentrated particles exist on the electrode surface within 5 μm, and three-dimensional concentration of particle with the concentration factor as large as 700 is possible using a monolithic channel, co-planar electrode, and sheathless solution feeding. This cascade electrokinetic method provides a new and effective preconcentrator for ultra-sensitive detection of rare samples.  相似文献   

8.
Manipulation of cells by acoustic forces in a continuous flow offers a means to sort on the basis of physical properties in a contactless, label-free and biocompatible manner. Many acoustic sorting systems rely on either standing waves or travelling waves alone and require specific exposure times to the acoustic field, fine-tuned by manipulating the bulk flow rate. In this work, we demonstrate a flow-rate-insensitive device for continuous particle sorting by employing a pressure field that utilises both travelling and standing acoustic wave components, whose non-uniform spatial distribution arises from the attenuation of a leaky surface acoustic wave. We show that in parts of the pressure field in which the travelling wave component dominates, particles migrate across multiple wavelengths. In doing so, they drift into areas of standing wave dominance, whereby particles are confined within their respective nodal positions. It is demonstrated that this final confinement location is dependent on the particle size and independent of the force field exposure time and thus the flow rate, permitting the continuous separation of 5.1-, 6.1- and 7.0-µm particles. Omitting the need to precisely control the bulk flow rate potentially enables sorting in systems in which flow is not driven by external pumps.  相似文献   

9.
This work presents theoretical, numerical and experimental investigations of electrokinetic transport and separation of droplets in a microchannel. A theoretical model is used to predict that, in case of micron-sized droplets transported by electro-osmotic flow, the drag force is dominant as compared to the dielectrophoretic force. Numerical simulations were performed to capture the transient electrokinetic motion of the droplets using a two-dimensional multi-physics model. The numerical model employs Navier–Stokes equations for the fluid flow and Laplace equation for the electric potential in an Arbitrary Lagrangian–Eulerian framework. A microfluidic chip was fabricated using micromilling followed by solvent-assisted bonding. Experiments were performed with oil-in-water droplets produced using a cross-junction structure and applying electric fields using two cylindrical electrodes located at both ends of a straight microchannel. Droplets of different sizes were produced by controlling the relative flow rates of the discrete and continuous phases and separated along the channel due to the competition between the hydrodynamic and electrical forces. The numerical predictions of the particle transport are in quantitative agreement with the experimental results. The work reported here can be useful for separation and probing of individual biological cells for lab-on-chip applications.  相似文献   

10.
In continuous magnetic separation process, particles can be deflected and separated from the direction of laminar flow by means of magnetic force depending on their magnetic susceptibility and size as well as the flow rate. To analyze and control dynamic behavior of these particles flowing in microchannels, a three-dimensional numerical model was proposed and solved for obtaining the particle trajectories under the action of a gradient magnetic field and flow field. The magnetic force distribution and particle trajectories obtained were firstly verified by analytical and experimental results. Then, a detailed analysis for the enhancement of the continuous magnetic separation efficiency by optimizing the flow parameters and microchannel configurations was carried out. The results show that the separation efficiency can be greatly improved by controlling the flow rate ratio of the two fluid streams and introducing a broadened segment in the T-shaped microchannel. And it has been demonstrated to be effective through the sorting of 2-μm and 5-μm non-magnetic particles suspended in a dilute ferrofluid by a permanent magnet. The results reported could be encouraging for the design and optimization of efficient microfluidic separation systems.  相似文献   

11.
Optical-induced dielectrophoresis (ODEP) is a novel technology used in the field of micro-/nanoparticles manipulation. The finite element method was applied for ODEP to research the particles motion in this paper. The potential distribution in the optoelectronic chip, which was induced by the incident light spot, was attained through electric current module in the COMSOL 4.3a. The particles motion was studied by coupling the module of electric current and particle tracing for fluid flow. Compared with molecular dynamics, the method proposed in the paper could effectively simplify the tedious programming. The polystyrene sphere (PS) particles with the radius of 2, 5, 10, and 15 μm were, respectively, used as the objects. The kinetic energy of the PS created by the dielectrophoresis (DEP) forces, the Stokes drag forces, the gravity forces, and the Brownian motion forces was calculated during the whole manipulation process. The simulation results indicated that with the decreasing in the particle size, the time on enrichment of the smaller PS would become longer. It was because that for the smaller PS, the effect of DEP forces would play less important role in the system. The conclusions in this paper could be used as a theoretical guidance in the further research.  相似文献   

12.
This paper presents the modeling and optimization of a magnetophoretic bioseparation chip for isolating cells, such as circulating tumor cells from the peripheral blood. The chip consists of a continuous-flow microfluidic platform that contains locally engineered magnetic field gradients. The high-gradient magnetic field produced by the magnets is spatially non-uniform and gives rise to an attractive force on magnetic particles flowing through a fluidic channel. Simulations of the particle–fluid transport and the magnetic force are performed to predict the trajectories and capture lengths of the particles within the fluidic channel. The computational model takes into account key forces, such as the magnetic and fluidic forces and their effect on design parameters for an effective separation. The results show that the microfluidic device has the capability of separating various cells from their native environment. An experimental study is also conducted to verify and validate the simulation results. Finally, to improve the performance of the separation device, a parametric study is performed to investigate the effects of the magnetic bead size, cell size, number of beads per cell, and flow rate on the cell separation performance.  相似文献   

13.

Non-invasive separation of particles with different sizes and sensitivities has been a challenge and interest for point-of-care diagnostics and personalized treatment. Dielectrophoresis is widely known as a powerful technique to sort the particles and (most importantly to) distinguish cells and monitor their state without the need for biochemical tags. In this paper, a dielectrophoresis-based microchannel design is proposed which allows for continuous particle sorting and separation under the applied AC field. It is also practical to implement the platform for monitoring cell behavior irregularities caused by certain diseases toward diagnosis and treatment. In this regard, the device employs dielectrophoretic (DEP) force exerted on the particles by only two electrodes with oblique arrangement in the channel. The electrodes are arranged with a bevel angle to the fluid flow direction but they are not parallel and therefore a gradually decreasing electric field is achieved along the channel’s width. As a result, the dielectrophoretic force, acting on the particles of different sizes, would also gradually decrease along channels width which renders the necessary distinguishing lateral displacements of particles for separation. Therefore, the particles with different sizes can be sorted in a continuous-flow regime and be received at multiple outlet reservoirs with no need to turn the electric field on/off. The presented device is fabricated and evaluated in the experiment to prove its feasibility. Afterward, using numerical simulations, we investigate the optimum design parameters in the presented device to enhance device efficiency for separating particles with different size ranges.

  相似文献   

14.
This paper demonstrates simple and cost-effective microfluidic devices for enhanced separation of magnetic particles by using soft magnetic microstructures. By injecting a mixture of iron powder and polydimethylsiloxane (PDMS) into a prefabricated channel, an iron–PDMS microstructure was fabricated next to a microfluidic channel. Placed between two external permanent magnets, the magnetized iron–PDMS microstructure induces localized and strong forces on the magnetic particles in the direction perpendicular to the fluid flow. Due to the small distance between the microstructure and the fluid channel, the localized large magnetic field gradients result a vertical force on the magnetic particles, leading to enhanced separation of the particles. Numerical simulations were developed to compute the particle trajectories and agreed well with experimental data. Systematic experiments and numerical simulation were conducted to study the effect of relevant factors on the transport of superparamagnetic particles, including the shape of iron–PDMS microstructure, mass ratio of iron–PDMS composite, width of the microfluidic channel, and average flow velocity.  相似文献   

15.
We present a centrifugal microfluidic system for precise cell/particle sorting using the concept of counterflow centrifugal elutriation (CCE). A conventional CCE system uses a rotor device incorporating a flow-through separation chamber, in which the balance of centrifugal and counterflow drag forces exerted on particles is gradually shifted by changing the flow rate and/or the rotation speed. In the present system, both the centrifugal and the fluid forces are generated through microdevice rotation in order to significantly simplify the setup of the conventional CCE. In addition, the density gradient of the medium is employed to elute particles/cells of different sedimentation velocities stepwise from the separation chamber instead of changing the rotation speed. We successfully separated polymer particles with diameters of 1.0–5.0 μm using a branched loading channel for focusing particles to the center of the separation chamber. We also demonstrated the sorting of blood cells for biological applications. This system may provide a versatile means for cell/particle sorting in a general biological laboratory and function as a unit operation in various centrifugal microfluidic platforms for biochemical experiments and clinical diagnosis.  相似文献   

16.
Inertial microfluidics can separate microparticles in a continuous and high-throughput manner, and is very promising for a wide range of industrial, biomedical and clinical applications. However, most of the proposed inertial microfluidic devices only work effectively at a limited and narrow flow rate range because the performance of inertial particle focusing and separation is normally very sensitive to the flow rate (Reynolds number). In this work, an innovative particle separation method is proposed and developed by taking advantage of the secondary flow and particle inertial lift force in a straight channel (AR = 0.2) with arc-shaped groove arrays patterned on the channel top surface. Through the simulation results achieved, it can be found that a secondary flow is induced within the cross section of the microchannel and guides different-size particles to the corresponding equilibrium positions. On the other hand, the effects of the particle size, flow rate and particle concentration on particle focusing and separation quality were experimentally investigated. In the experiments, the performance of particle focusing, however, was found relatively insensitive to the variation of flow rate. According to this, a separation of 4.8 and 13 µm particle suspensions was designed and successfully achieved in the proposed microchannel, and the results show that a qualified particle separation can be achieved at a wide range of flow rate. This flow rate-insensitive microfluidic separation (filtration) method is able to potentially serve as a reliable biosample preparation processing step for downstream bioassays.  相似文献   

17.
Insulator-based dielectrophoresis (iDEP) has been successfully used for on-chip manipulations of biological samples. Despite its effectiveness, iDEP typically requires high DC voltages to achieve sufficient electric field; this is mainly due to the coupled phenomena among linear electrokinetics: electroosmosis (EO) and electrophoresis (EP) and nonlinear electrokinetics: dielectrophoresis (DEP). This paper presents a microfluidic technique using DC-offset AC electric field for electrokinetic concentration of particles and cells by repulsive iDEP. This technique introduces AC electric field for producing iDEP which is decoupled from electroosmosis (EO) and electrophoresis (EP). The repulsive iDEP is generated in a PDMS tapered contraction channel that induces non-uniform electric field. The benefits of introducing AC electric field component are threefold: (i) it contributes to DEP force acting on particles, (ii) it suppresses EO flow and (iii) it does not cause any EP motion. As a result, the required DC field component that is mainly used to transport particles on the basis of EO and EP can be significantly reduced. Experimental results supported by numerical simulations showed that the total DC-offset AC electric field strength required to concentrate 15-μm particles is significantly reduced up to 85.9% as compared to using sole DC electric field. Parametric experimental studies showed that the higher buffer concentration, larger particle size and higher ratio of AC-to-DC electric field are favorable for particle concentration. In addition, the proposed technique was demonstrated for concentration of yeast cells.  相似文献   

18.
Hybrid microelectrode chip structures were used to generate three dimensional field cages. The a.c. field generated negative dielectrophoretic forces and caused suspended particles to aggregate. The shape and size of the aggregate depends on the material, suspending liquid, electrode arrangement, electrode driven and size. Particle-aggregates can be stabilised by chemical or physical means. Photopolymerization was used to solidify latexes into artificial microbodies in the micrometer range and antibody-mediated agglutination was also used. Single particles or aggregates can be covered by one or more layers of different materials and geometries. We show a glass sphere covered by a structured multivesicular coating and a gas bubble covered by a latex particle layer. The microbody casting technology can find application in materials science, pharmaceutical formulation and biotechnology. This work was supported by grant No. 0310260A and 13 MV03032 of BMFT/VDI (Germany).  相似文献   

19.
This study presents a particle manipulation and separation technique based on dielectrophoresis principle by employing an array of isosceles triangular microelectrodes on the bottom plate and a continuous electrode on the top plate. These electrodes generate non-uniform electric fields transversely across the microchannel. The particles within the flowing fluid experience a dielectrophoretic force perpendicular to the fluid flow direction due to the non-uniform electric fields. The isosceles triangular microelectrodes were designed to continuously exert a small dielectrophoretic force on the particles. Particles experiencing a larger dielectrophoretic force would move further in the perpendicular direction to the fluid flow as they traveled past each microelectrode. Polystyrene microspheres were used as the model particles, with particles of ∅20 μm employed for studying the basic characteristics of this technique. Particle separation was subsequently demonstrated on ∅10 and ∅15 μm microspheres. Using an applied sinusoidal voltage of 20 Vpp and frequency of 1 MHz, a mean separation distance of 0.765 mm between them was achieved at a flow rate of 3 μl/min (~1 mm/s), an important consideration for high throughput separation capability in a micro-scale technology device. This unique isosceles triangular microelectrodes design allows heterogeneous particle populations to be separated into multiple streams in a single continuous operation.  相似文献   

20.
A numerical solution concept is presented for simulating the transport and deposition to surfaces of discrete, small (nano-)particles. The motion of single particles is calculated from the Langevin equation by Lagrangian integration under consideration of different forces such as drag force, van der Waals forces, electrical Coulomb forces and not negligible for small particles, under stochastic diffusion (Brownian diffusion). This so-called particle Monte Carlo method enables the computation of macroscopic filter properties as well the detailed resolution of the structure of the deposited particles. The flow force and the external forces depend on solutions of continuum equations, as the Navier-Stokes equations for viscous, incompressible flows or a Laplace equation of the electrical potential. Solutions of the flow and potential fields are computed here using lattice-Boltzmann methods. Essential advantage of these methods are the easy and efficient treatment of three-dimensional complex geometries, given by filter geometries or particle covered surfaces. A number of numerical improvements, as grid refinement or boundary fitting, were developed for lattice-Boltzmann methods in previous studies and applied to the present problem. The interaction between the deposited particle layer and the fluid field or the external forces is included by recomputing of these fields with changed boundaries. A number of simulation results show the influence of different effects on the particle motion and deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号