首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B.K. Kirke 《Renewable Energy》2011,36(11):3013-3022
Despite much optimistic language on commercial websites, little data is available on actual performance of hydrokinetic turbines. This paper summarises the findings of a series of tests on several Darrieus type cross flow hydrokinetic turbines (HKTs). Although this type of hydrokinetic turbine (HKT) has some advantages over axial flow turbines, fixed pitch Darrieus HKTs also have some drawbacks, including inability to self-start under load, low efficiency and shaking. Variable pitch has been suggested to increase starting torque and efficiency, ducts to increase power output and helical blades to produce smooth torque. To assess each of these modifications, tests were conducted in Australia and Canada on HKTs with fixed and variable pitch straight blades, fixed helical blades, with and without a slatted diffuser, by mounting each turbine in front of a barge and motoring through still water at speeds ranging from less than 1 m/s up to 5 m/s. The diffuser increased the power output by a factor of 3 in one configuration but considerably less in others. A reason for this finding is suggested. The maximum coefficient of performance Cp of the fixed pitch straight blade and helical turbines without a diffuser ranged from about 0.25 at 1.5 m/s down to less than 0.1 at 5 m/s, while Cp for those with a diffuser ranged from about 0.45 down to about 0.3. Fixed blade turbines, both straight and helical, exhibited low starting torque, while variable pitch turbines started easily. Considerable differences in Cp were observed for the same turbine configuration at different speeds. The turbine with fixed pitch, straight blades was found to shake violently due to cyclical hydrodynamic forces on blades, while the helical and variable pitch turbines did not shake excessively. These findings suggest that variable pitch cross flow HKTs should be further investigated.  相似文献   

2.
The designers of horizontal axis wind turbines and tidal current turbines are increasingly focusing their attention on the design of blade sections appropriate for specific applications. In modern large wind turbines, the blade tip is designed using a thin airfoil for high lift : drag ratio, and the root region is designed using a thick version of the same airfoil for structural support. A high lift to drag ratio is a generally accepted requirement; however, although a reduction in the drag coefficient directly contributes to a higher aerodynamic efficiency, an increase in the lift coefficient does not have a significant contribution to the torque, as it is only a small component of lift that increases the tangential force while the larger component increases the thrust, necessitating an optimization. An airfoil with a curvature close to the leading edge that contributes more to the rotation will be a good choice; however, it is still a challenge to design such an airfoil. The design of special purpose airfoils started with LS and SERI airfoils, which are followed by many series of airfoils, including the new CAS airfoils. After nearly two decades of extensive research, a number of airfoils are available; however, majority of them are thick airfoils as the strength is still a major concern. Many of these still show deterioration in performance with leading edge contamination. Similarly, a change in the freestream turbulence level affects the performance of the blade. A number of active and passive flow control devices have been proposed and tested to improve the performance of blades/turbines. The structural requirements for tidal current turbines tend to lead to thicker sections, particularly near the root, which will cause a higher drag coefficient. A bigger challenge in the design of blades for these turbines is to avoid cavitation (which also leads to thicker sections) and still obtain an acceptably high lift coefficient. Another challenge for the designers is to design blades that give consistent output at varying flow conditions with a simple control system. The performance of a rotating blade may be significantly different from a non‐rotating blade, which requires that the design process should continue till the blade is tested under different operating conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Gurney襟翼对水平轴风力机性能影响的实验研究   总被引:6,自引:1,他引:6  
在小型低速风洞中对装有NACA4424翼型叶片的水平轴风力机及在其尾缘加装Gurney襟翼的风力机进行了一系列性能对比实验。Gurney襟翼的高度分别为2%b和4%b(b为翼型弦长),叶片安装角在6°~14°范围内,实验风速为6~15m/s。实验结果表明,Gurney襟翼对水平轴风力机性能有显著影响,特别是在大安装角(即大攻角和大升力)下;在小安装角(即小攻角和小升力)时,Gurney襟翼使风力机性能降低。同时,装2%b襟翼的风力机性能要高于装4%b襟翼的风力机;在12°安装角时,前者提高风力机功率最少有39%,而后者也可提高风力机功率在34%以上。对于风力机最常用的叶型FFA-W3-211加装2%b的Gurney襟翼后的风洞对比实验同样证明了上述结论。  相似文献   

4.
For rough wind turbine airfoil and its blunt trailing-edge modification, the aerodynamic performance has been numerically investigated to facilitate a greater understanding of the effects of the blunt trailing-edge modification on the aerodynamic performance enhancement of airfoil with sensitive roughness height. The S834 airfoil from National Renewable Energy Laboratory is used for the simulation. The lift and drag coefficients of S834 airfoil with smooth or rough surface are calculated by the k-ω SST turbulence model, and are compared with wind tunnel test results. The aerodynamic performance of airfoils with different roughness heights is studied to obtain the sensitive roughness heights of suction and pressure surfaces. The mathematical expression of the blunt trailing-edge airfoil profile is established using the coordinate's rotation combined with the zoom coefficient of coordinate. Then, the S834 airfoil with sensitive roughness height is modified to be symmetrical blunt trailing-edge modification, and the lift and drag coefficients and the lift-drag ratio are also calculated and analyzed. Results indicate that the sensitive roughness height of suction surface is 0.5 mm, and the pressure surface is insensitive to the roughness height. Through the blunt trailing-edge modification, the lift coefficient and the maximum lift-drag ratio obviously increase for rough airfoil, and the sensitivity of airfoil to roughness height is reduced. The research provides significant guidance for designing the wind turbine airfoil under conditions of rough blade.  相似文献   

5.
尾缘襟翼对风力机翼型气动特性影响研究   总被引:1,自引:0,他引:1  
尾缘襟翼(TEF)因其对翼型气动特性的调控能力,被认为是降低叶片疲劳和局部载荷最具可行性的气动控制部件。对TEF进行建模,采用Xfoil和CFD软件分析了TEF对翼型气动特性的影响及其机理,并从叶素理论角度对变化来流下TEF的减载效果进行了验证,结果表明:TEF位于不同摆角时翼型升阻力系数均有不同程度的变化,TEF可有效实现对翼型气动特性的主动控制;TEF摆动改变了翼型表面的静压分布和流动状态,进而对翼型升阻力和失速攻角产生影响;TEF可快速有效降低风速突然增加后的叶素受力,进而控制并减小叶片载荷。  相似文献   

6.
Wind turbines operate under various wind conditions in which turbulence virtually always exists. Therefore, unsteady wind turbine simulation methods to estimate wind loading in turbulent inflow conditions are very important for developing optimally designed wind turbines. Several methods have been developed for this purpose and are usually based on the blade element momentum theory (BEMT), which is used for calculation of the wind loading on turbine blades. The local shear flow effect induced by turbulence, however, is not explicitly considered in the popular BEMT-based simulations. Extreme situations can occur in a large-scale wind farm where the inflow field of a wind turbine may contain strong tip vortices generated from upstream turbines. In this study, the effects of idealized local shear flows around a two-dimensional airfoil, S809, on its aerodynamic characteristics were analyzed by CFD simulations. Various parameters including reference inflow velocity, shear rate, angle of attack, and cord length of the airfoil were examined. From the simulation results, several important characteristics were found. The shear rate in a flow causes some changes in the lift coefficient depending on its sign and magnitude, while the angle of attack does not have a distinguishable influence. The chord length and reference inflow also cause proportional and inversely proportional changes in the lift coefficient, respectively. Based on these observations, we adopted an analytic expression for the lift coefficient from the thin airfoil theory and proposed a lift correction model, which is easily applicable to the traditional load analysis procedure based on the BEMT.  相似文献   

7.
Prediction of ice shapes on a wind turbine blade makes it possible to estimate the power production losses due to icing. Ice accretion on wind turbine blades is responsible for a significant increase in aerodynamic drag and decrease in aerodynamic lift and may even cause premature flow separation. All these events create power losses and the amount of power loss depends on the severity of icing and the turbine blade profile. The role of critical parameters such as wind speed, temperature, liquid water content on the ice shape, and size is analyzed using an ice accretion prediction methodology coupled with a blade element momentum tool. The predicted ice shapes on various airfoil profiles are validated against the available experimental and numerical data in the literature. The error in predicted rime and glime ice volumes and the maximum ice thicknesses varies between 3% and 25% in comparison with the experimental data depending on the ice type. The current study presents an efficient and accurate numerical methodology to perform an investigation for ice‐induced power losses under various icing conditions on horizontal axis wind turbines. The novelty of the present work resides in a unified and coupled approach that deals with the ice accretion prediction and performance analysis of iced wind turbines. Sectional ice profiles are first predicted along the blade span, where the concurrence of both rime and glaze ice formations may be observed. The power loss is then evaluated under the varying ice profiles along the blade. It is shown that the tool developed may effectively be used in the prediction of power production losses of wind turbines at representative atmospheric icing conditions.  相似文献   

8.
应用计算流体动力学有限体积法SIMPLE算法,配合SST k-ω湍流模型和滑动网格技术模拟分析了有弯度翼型4叶片垂直轴风力机的气动特性,以其作为有弯度翼型垂直轴风力机设计的参考依据。研究结果发现,在入口流速为10 m/s,尖速比为1.6时,该种风力机单个叶片的瞬时力矩系数为-0.03~0.18,并且在一个转动周期内正的瞬时力矩系数历时较长;整个风轮的的力矩系数在尖速比为1.6左右时达到最大值,功率系数在尖速比为1.7左右时达到最大值。  相似文献   

9.
叶片是风力机最重要的组成部分,在不同的风能资源情况下,翼型的选择对垂直轴风力机气动特性有着重要的影响。文章分别以NACA0018翼型(对称翼型)和NACA4418翼型(非对称翼型)建立3叶片H型垂直轴风力机二维仿真模型。应用数值模拟的研究方法,从功率系数、单个叶片切向力系数等方面比较两种风力机模型在不同叶尖速比下的气动特性,并采用风洞实验数据验证了流场计算的准确性。CFD计算结果表明:在低叶尖速比下,NACA4418翼型风力机气动特性优于NACA0018翼型风力机,适用于低风速区域;在高叶尖速比下,NACA0018翼型风力机气动特性较好,适用于高风速地区。而且在高叶尖速比时,NACA0018翼型在上风区时,切向力系数平均值要高于NACA4418翼型,在下风区时,NACA418翼型切向力系数平均值高。该研究可为小型垂直轴风力机翼型的选择提供参考。  相似文献   

10.
表面粗糙度对风力机翼型性能的影响   总被引:3,自引:5,他引:3  
讨论了风力机专用叶片上局部增加表面粗糙度,在不同分布位置、不同当量大小的条件下对叶片气动性能影响的实验研究。首先,探讨了叶型表面粗糙度的形成机理和对气动性能影响的初步原理。其次,设计了在风洞实现局部增加表面粗糙度对翼型性能影响的实验条件和实验方案。最后,对风力机专用叶型进行的叶片表面局部增加粗糙度的风洞实验,结果证明了在叶片压力面尾缘通过适当增加一定宽度、一定粗糙度的粗糙带可以增大叶片的有效升力系数。  相似文献   

11.
This paper presents the design and validation of the high performance and low noise Chong Qing University and Technical University of Denmark LN1 (CQU‐DTU‐LN1) series of airfoils for wind turbine applications. The new design method uses target characteristics of wind turbine airfoils in the design objective, such as airfoil lift coefficient, drag coefficient and lift‐drag ratio, and minimizes trailing edge noise as a constraint. To express airfoil shape, an analytical expression is used. One of the main advantages of the present design method is that it produces a highly smooth airfoil shape that can avoid the problem of curvature discontinuity. An airfoil profile with discontinuous curvature can produce a discontinuous pressure gradient (i.e., local flow acceleration or deceleration), which enhances flow separation and thus decreases the airfoil performance. By combining the design method with the blade element momentum theory, the viscous‐inviscid xfoil code and an airfoil self‐noise prediction model, an optimization algorithm has been developed for designing the high performance and low noise CQU‐DTU‐LN1 series of airfoils with targets of maximum power coefficient and low noise emission. To validate the airfoil design, CQU‐DTU‐LN118 airfoil has been tested experimentally in the acoustic wind tunnel located at the Virginia Polytechnic Institute and State University (Virginia Tech), USA. To show the superiority of the CQU‐DTU‐LN1 airfoils, comparisons on aerodynamic performance and noise emission between the CQU‐DTU‐LN118 airfoil and the National Advisory Committee for Aeronautics (NACA) 64618 airfoil, which is used in modern wind turbine blades, are carried out. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A very small wind turbine system for multi-purposes was developed and its performance was reported in this paper. The rotor diameter of the turbine is 500 mm. The tests of the energy output, turbine speed, power coefficient, and torque of turbine were carried out for a wide rage of free stream velocity. The flow around the wind turbine and the influence of the turbulence were investigated with a particle image velocimetry. Experimentally obtained power coefficient was 0.4 in maximum and 0.36 in the rated running condition, respectively. The tip speed ratio corresponding to the optimum driving condition was 2.7. Comparing with the other commercial turbines, the performance was excellent at a slow turbine speed. By the flow visualization and PIV measurement around the wind turbine, the approaching flow velocity and the accelerated flow field passing the blade tip was obtained. It was confirmed that the actual flow passed through the blades was about 20% slower than the ideal flow. Tip vortex shed from the blade tip was also visualized clearly.  相似文献   

13.
Effect of icing roughness on wind turbine power production   总被引:1,自引:0,他引:1       下载免费PDF全文
The objective of this work is a quantitative analysis of power loss of a representative 1.5‐MW wind turbine subject to various icing conditions. Aerodynamic performance data are measured using a combination of ice accretion experiments and wind tunnel tests. Atmospheric icing conditions varying in static temperature, droplet diameter and liquid water content are generated in an icing facility to simulate a 45‐min icing event on a DU 93‐W‐210 airfoil at flow conditions pertinent to 80% blade span on a 1.5‐MW wind turbine. Iced airfoil shapes are molded for preservation and casted for subsequent wind tunnel testing. In general, ice shapes are similar in 2D profile, but vary in 3D surface roughness elements and in the ice impingement length. Both roughness heights and roughness impingement zones are measured. A 16% loss of airfoil lift at operational angle of attack is observed for freezing fog conditions. Airfoil drag increases by 190% at temperatures near 0° C, 145% near 10° C and 80% near 20° C. For a freezing drizzle icing condition, lift loss and drag rise are more severe at 25% and 220%, respectively. An analysis of the wind turbine aerodynamic loads in Region II leads to power losses ranging from 16% to 22% for freezing fog conditions and 26% for a freezing drizzle condition. Differences in power loss between icing conditions are correlated to variance in temperature, ice surface roughness and ice impingement length. Some potential control strategies are discussed for wind turbine operators attempting to minimize revenue loss in cold‐climate regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
One of attracting concepts has been the use of Magnus effect to produce lift from rotating cylinders in various engineering applications. With emerging innovative Magnus type wind turbine technology, it is important to determine power performance and characteristics of such generators as correctly as possible. As stressed by Seifert, there is lack of theories in design and modelling of using Magnus force in engineering which is particularly noticed for the horizontal axis Magnus type wind turbines. In this study, the importance of research carried out for determining lift and drag forces of rotating circular cylinders is highlighted and reviewed. Then, the theoretical methods used in designing commercial aerofoil type wind turbines are extended to apply on the Magnus types. New formulation is presented for potential flow around the Magnus blades. The blade element momentum (BEM) theory is formulated for the Magnus wind turbines. A cubic function for angular induction factor is found from the BEM analysis which is strongly dependant on the drag to lift ratio. It is also observed that the relative wind incidence angle and the local power coefficient of the Magnus cylinder are independent functions of spin ratio.  相似文献   

15.
Most of the classical wind turbines are not able to start at wind speeds as low as 2–3 m/s. Other turbines, like Savonius, have a low maximum efficiency, which renders them useless in poor wind conditions. Therefore, new turbine designs are required to harvest wind power even when the wind speed is low. A wind turbine having a crossflow runner, similar to the Banki water turbine, is studied numerically in this work in order to estimate its performance. The results obtained suggest that this turbine has a considerable high starting torque and its maximum power coefficient is comparable to those of horizontal axis wind turbines. Based on the results obtained, some improvements of the design are proposed in order to further increase turbine performance.  相似文献   

16.
针对神经网络模型可以基于现有数据快速准确地预测风力机翼型的气动性能,但大量学习样本的构建需要较高的时间成本的问题,建立基于小样本集的风力机翼型神经网络模型,提出了多约束条件下的翼型气动性能优化设计方法,解决了训练数据过少所造成的学习不充分问题。基于建立的优化设计模型,应用粒子群算法完成了NACA4415翼型的优化设计,将新翼型与原始翼型进行气动特性对比分析。结果表明:新翼型在主要工作攻角范围内最大升力系数提高了6.96%,最大升阻比提高了7.37%,气动性能明显改善;该方法的优化效率远远高于传统方法,从而验证了该方法的可行性。  相似文献   

17.
结合层流翼型与钝尾缘的特性,通过Hicks-Henne型函数对翼型参数化修型,基于多岛遗传算法及Xfoil气动分析,针对大型水平轴风力机翼型进行多目标函数、多设计工况、多约束条件下的优化设计,得到适用于大型风力机的高性能翼型族(USST翼型族)。其升阻比在大多数攻角下均高于同厚度的FFA、DU系列等现有风力机翼型族,且在同样的升力系数下具有更大的升阻比。最后为考核优化设计得到的翼型族,采用数值模拟方法对优化结果进行验证,证明设计得到的新型风力机翼型族具有优越的气动性能。  相似文献   

18.
采用计算流体力学方法,研究了主流风速为10 m/s,翼型弦长雷诺数为1.2×10~5条件下振动膜片对NACA0012翼型在18°攻角深失速下流动分离的影响。研究表明:振动膜片能明显提高翼型升力系数、降低阻力系数、改善流场状况;当无量纲频率处在1~1.5范围内时,翼型升阻比可大幅提升,最大可提高75.7%;无量纲振幅对翼型升阻比的影响也很显著,相对于原型存在一个最佳的振幅使得翼型升阻比能获得最大提升;不同振幅下,最佳升阻比对应的无量纲频率随振幅增大而减小。  相似文献   

19.
One of the more promising advanced concepts for overcoming the economic deterrents to widespread use of windpower is the Diffuser-Augmented Wind Turbine (DAWT). The diffuser controls the expansion of turbine exhaust flow, producing a highly subatmospheric pressure at the turbine exit. The low static pressure induces greater mass flow through the turbine in contrast to a conventional turbine design of the same diameter. Thus, the output power of the DAWT is much larger than for an unshrouded turbine.Our wind tunnel investigation of models of two diffuser design concepts is directed toward unconventional, very short, cost-effective configurations. One approach uses the energetic external wind to prevent separation of the diffuser's internal boundary layer. Another method uses high lift airfoil contours for the diffuser wall shape.Diffuser model tests have indicated almost a doubling of wind power extraction capability for DAWTs compared to conventional turbines. Economic studies of DAWTs have used these test data and recent (1975) cost projections of wind turbines with diameter. The specific power costs ($/kW) for a realistic DAWT configuration are found to be lower than conventional wind turbines for very large size rotors, above 50 m diameter, and for rotor diameters less than about 20 m. The cost-to-benefit assessment for intermediate size rotors is affected by the uncertainty band of cost for these rotor sizes.  相似文献   

20.
Effects of leading edge erosion on wind turbine blade performance   总被引:1,自引:0,他引:1  
This paper presents results of a study to investigate the effect of leading edge erosion on the aerodynamic performance of a wind turbine airfoil. The tests were conducted on the DU 96‐W‐180 wind turbine airfoil at three Reynolds numbers between 1 million and 1.85 million, and angles of attack spanning the nominal low drag range of the airfoil. The airfoil was tested with simulated leading edge erosion by varying both the type and severity of the erosion to investigate the loss in performance due to an eroded leading edge. Tests were also run with simulated bugs on the airfoil to assess the impact of insect accretion on airfoil performance. The objective was to develop a baseline understanding of the aerodynamic effects of varying levels of leading edge erosion and to quantify their relative impact on airfoil performance. Results show that leading edge erosion can produce substantial airfoil performance degradation, yielding a large increase in drag coupled with a significant loss in lift near the upper corner of the drag polar, which is key to maximizing wind turbine energy production. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号