首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study involves continuous co-digestion of swine manure and pineapple waste mixture using two-stage anaerobic reactors and examines hydraulic retention time (HRT) and substrate heat pre-treatment. The maximum hydrogen and methane production rates of 1488.62 and 991.57 mL/L/d, respectively, reached optimal HRTs of 4.5 h in the hydrogen production fermenter (HPF) and 9 d in the methane production fermenter (MPF) using heat pre-treatment. Acetic acid is a dominant volatile fatty acid of the soluble metabolites with values 70%–73% under all the tested conditions and increased values under heat pre-treatment and high HRT. Firmicutes and Euryarchaeota are the main bacteria species detected in HPF and MPF, respectively. The optimal total energy of 196.47 kJ/L/d and chemical oxygen demand (COD) removal efficiency of 90% were obtained by a complete anaerobic co-digestion process at a high substrate concentration of 105 g COD/L and low HRT of 4.5 h. This shows that the two-stage co-digestion process could increase the COD removal efficiency, hydrogen production rate, and net energy gains and produce high quality biogas and significantly reduce fermentation time.  相似文献   

2.
Effects of anaerobic pre-treatment were evaluated on the dewatered-sewage sludge from a municipal wastewater treatment plant in order to improve its biodegradability through anaerobic digestion. The pre-treatment was conducted in laboratory scale at 25, 50 and 70 °C for an incubation time of two days. As a reference, sludge sample was also autoclaved at 121 °C for 20 min to determine the thermal effect to the subsequent sludge digestion. Characteristics of dewatered-sludge such as viscosity, pH and soluble chemical oxygen demand (SCOD) were affected by the pre-treatment. A higher SCOD after the pre-treatment did not necessarily imply an increase in methane yield, although initial biodegradability rate was improved. In fact, a ‘great’ improvement in SCOD concentration (up to 27%) was translated in only 8% increase in the methane yield (298 ± 9 and 276 ± 6 Nml CH4 gVSadded?1 for pre-treated and untreated samples, respectively). Increasing the anaerobic pre-treatment time from 12 h to 2 days at 50 °C led to an 11% improvement in methane yield. Methane content in biogas increased from an average of 65–69% for the pre-treated and untreated substrates, respectively. Volatile solids (VS) reduction increased from 42% to 51%. The overall digestion time was not affected by the pre-treatment but 90% of methane was produced in the first 12 days of incubation for 50 °C pre-treated samples whereas it took 2–5 days more for 25, 70 °C pre-treated and untreated sludge samples. In this study, thermophilic digestion was also found to be a better option in terms of faster digestion and higher VS-reduction, but it showed lower methane yield as compared to mesophilic digestion, i.e. 9% and 11% increment in methane yields for thermophilic and mesophilic digestions, respectively.  相似文献   

3.
The aim of this study was to advance in understanding of digestion process of energy crops. Cellulose and maize silage were fermented in batch mode at mesophilic (38 °C) and thermophilic (55 °C) conditions and corresponding organic loads of 5.5 ± 0.2 kgVS/m3, 11.2 ± 0.3 kgVS/m3 and 16.7 ± 0.4 kgVS/m3.For both substrates more stable and faster digestion took place at 38 °C. Due to complex structure maize degradation was characterized by varying digestion rate and longer total digestion time resulting form breakdown of hard-degradable fractions. The digestion retard at increased OLRs of cellulose and lower degradation level obtained for all cellulose series confirm a higher overloading potential for systems dealing with single-component-substrates but also the enhanced sensitivity of such systems to any inconvenient digestion conditions.Based on observed patterns of volatile fatty acids and oxidation-reduction potential, different fermentation mechanisms can be concluded for cellulose and maize, but also for different temperature modes. Conversion of maize at highly reductive conditions with increased concentrations of butyric acid was accompanied by much higher activity of hydrogenotrophic methanogens than for cellulose digestion.Two factors showed a strong potential to influence test results: an insufficient VS content of inoculum, which caused reduced biogas yields, and a high natural biodiversity of maize silage, resulting in higher biogas yields than calculated based on the maize composition.  相似文献   

4.
Isochrysis galbana and Selenastrum capricornutum, marine and freshwater microalgae species respectively, were co-digested with sewage sludge under mesophilic and thermophilic conditions. The substrates and the temperatures significantly influenced biogas production.Under mesophilic conditions, the sewage sludge digestion produced 451 ± 12 mLBiogas/gSV. Furthermore, all digesters were fed with I. galbana, or mixed with sludge, resulting in an average of 440 ± 25 mLBiogas/gSV. On the contrary, S. capricornutum produced 271 ± 6 mLBiogas/gSV and in the mixtures containing sludge produced intermediate values between sludge and microalgae production.Under thermophilic conditions, the sewage sludge digestion achieved yet the highest biogas yield, 566 ± 5 mLBiogas/gSV. During co-digestion, biogas production decreased when the microalgae content increased, and for I. galbana and for S. capricornutum it reached minimum values, 261 ± 11 and 185 ± 7 mLBiogas/gSV, respectively. However, no evidence of inhibition was found and the low yields were attributed to microalgae species characteristics.The methane content in biogas showed similar values, independently from the digested substrate, although this increased by approximately 5% under thermophilic condition.  相似文献   

5.
The paper presents the results of a pilot- and full-scale experimental campaign on the anaerobic co-digestion of waste activated sludge and biowaste both in mesophilic and thermophilic conditions. The study demonstrated the possibility to increase the specific biogas production from 0.34 to 0.49 m3/kgTVS and the gas production rate from 0.53 to 0.78 m3per m3 of reactor per day changing the reactor temperature from the mesophilic (37 °C) to the thermophilic (55 °C) range. The experimental work was carried out at pilot-scale, and the results match the full-scale behaviour. Ammonia nitrogen recycled from the anaerobic digestion section to the wastewater treatment plant accounted for about 4% of the total nitrogen loading. Digestate characteristics in terms of biological stability and heavy metals content suggested the opportunity of a short time post-aerobic stabilisation, leading to a high quality compost product.  相似文献   

6.
This study was investigated biohydrogen production on the effects of different ratio of food waste to seed digestate and pH value from co-digestion process in anaerobic reactor. The seed digestate was mixture of cattle manure 45%, corn silage 25%, chicken manure 15%, and olive pomace 15% which was collected from the biogas plant in central Italy. It was found that the peaks of total biogas and the biohydrogen productions were 1355 ± 26 and 436 ± 10 mL whereas the biohydrogen yield was 50.4 mL/g-VS (45.8 mL/g-COD) with 43.33% COD removal rate, the bacteria to substrate volatile solids (VS) ratio was 2:1 where seed digestate to food waste was 6:4 under pH 6.5. As a consequence, food waste with a high COD concentration can be adapted C/N ratio by the cattle manure and chicken manure in the seed digestate which resulted in a high biohydrogen production. The food waste co-digestion system mixed with biogas plant digestate is one of approach to increase total biogas production.  相似文献   

7.
This study was carried to investigate the effect of thermal pre-treatment at 55 °C, 65 °C, 75 °C, and 85 °C on sulfate-reducing bacteria (SRB) and methanogens to check their potential in a Bio-electrochemical system (BES) for hydrogen and methane production. The experimental results indicate that SRB culture pre-treated at 55 °C could be used efficiently in hydrogen production up to 2.814 ± 0.091 M/M of glucose. A significant drop in methane production from Phase-I to Phase-III with an increase in pre-treatment temperature was observed. Volatile fatty acids production was found highest in Phase-III, with butyric acid in major concentration at the pre-treatment temperature range of 55 °C–65 °C in SRB-based BES. The higher hydrogen production conditions were tested with various models i.e. the Gompertz model, Richard model, and Logistic model to confirm its validity and hydrogen production prediction. Richard's model was found best fitted for cumulative hydrogen production.  相似文献   

8.
In this study, a two-stage biohythane production system was used to treat swine manure to solve the high Chemical Oxygen Demand (COD) concentration and verify the total energy recovery between the two-stage and a traditional single-stage system. Experiments were carried out in single-stage methane production, two-stage biohythane production in long Hydraulic Retention Time (HRT), and short HRT. The COD removal efficiency and energy recovery were finally compared between single-stage (CH4 fermenter) and two-stage (H2+ CH4 fermenter) systems. The results showed that the methane production rate of 53.2 ± 2.7 mL/d.L, the COD removal efficiency of 29.6 ± 5.8%, and total energy recovery of 2.9 ± 0.1 kJ/L.d was obtained in the single-stage of methane production system with HRT 11.08 d, pH 7, and temperature 55 °C, respectively. In the two-stage of hydrogen and methane productions system, the hydrogen production rate of 1.8 ± 0.7 mL/d.L, the methane production rate of 65.7 ± 2.5 mL/d.L, the COD removal rate was 97.8 ± 1.7%, and the total energy recovery of 3.6 ± 0.1 kJ/L.d was obtained and stabilized when the sugary wastewater content gradually reduced to 0%. This study shows that the methane production rate increases 20%, COD removal efficiency increases to 97.8 ± 1.7%, and total energy recovery increases 30%. At the same time, the single-stage (CH4 fermenter) switched to a two-stage (H2+ CH4 fermenter) system. The two-stage anaerobic biohythane production system successfully treated the high organic swine manure and obtained a higher energy recovery against the traditional single-stage of the biomethane production system.  相似文献   

9.
Optimization of biogas production and quality from chicken droppings by anaerobic co-digestion with Cymbopogon citratus was investigated. The anaerobic digestions of chicken droppings, chicken droppings with C. citratus as well as C. citratus alone were carried out for a period of 30 days at an average ambient temperature of 33.1 ± 2 °C using identical reactors (A–C) respectively. Results obtained indicate that chicken droppings produced on the average 1.8 L/kg/day of biogas, co-digestion of chicken droppings and C. citratus produced 1.3 L/kg/day of biogas while C. citratus alone produced 1.0 L/kg/day with estimated average methane content of 41.71%, 66.20% and 71.95% for reactors A–C respectively. The water boiling rates of biogas from chicken droppings, chicken droppings with C. citratus, and C. citratus alone were 0.079 L/min, 0.091 L/min and 0.12 L/min respectively, after the gases were scrubbed with water and slaked lime. It was observed that notwithstanding the higher biogas volumetric yield from chicken droppings digested alone, the co-digestion of chicken droppings with C. citratus had better gas quality with respect to the methane content present and cooking rate. This study has shown that the methane content of biogas from animal manure substrates could be improved by co-digestion with energy plants.  相似文献   

10.
This study evaluated the feasibility of H2 and CH4 production in two-stage thermophilic (55 °C) anaerobic digestion of sugarcane stillage (5,000 to 10,000 mg COD.L−1) using an acidogenic anaerobic fluidized bed reactor (AFBR-A) with a hydraulic retention time (HRT) of 4 h and a methanogenic AFBR (AFBR-S) with HRTs of 24 h–10 h. To compare two-stage digestion with single-stage digestion, a third methanogenic reactor (AFBR-M) with a HRT of 24 h was fed with increasing stillage concentrations (5,000 to 10,000 mg COD.L−1). The AFBR-M produced a methane content of 68.4 ± 7.2%, a maximum yield of 0.30 ± 0.04 L CH4.g COD−1, a production rate of 3.78 ± 0.40 L CH4.day−1.L−1 and a COD removal of 73.2 ± 5.0% at an organic loading rate (OLR) of 7.5 kg COD.m−3.day−1. In contrast, the two-stage AFBR-A system produced a hydrogen content of 23.9 ± 5.6%, a production rate of 1.30 ± 0.16 L H2.day−1.L−1 and a yield of 0.34 ± 0.08 mmol H2.g CODap−1. Additionally, the decrease in the HRT from 18 h to 10 h in the AFBR-S favored a higher methane production, improving the maximum methane content (74.5 ± 6.0%), production rate (5.57 ± 0.38 L CH4.day−1.L−1) and yield (0.26 ± 0.06 L CH4.g COD−1) at an OLR of 21.6 kg COD.m−3.day−1 (HRT of 10 h) with a total COD removal of 70.1 ± 7.1%. Under the applied COD of 10,000 mg L−1, the two-stage system showed a 52.8% higher energy yield than the single-stage anaerobic digestion system. These results show that, relative to a single-stage system, two-stage anaerobic digestion systems produce more hydrogen and methane while achieving similar treatment efficiencies.  相似文献   

11.
The energy efficiency of different biogas systems, including single and co-digestion of multiple feedstock, different biogas utilization pathways, and waste-stream management strategies was evaluated. The input data were derived from assessment of existing biogas systems, present knowledge on anaerobic digestion process management and technologies for biogas system operating conditions in Germany. The energy balance was evaluated as Primary Energy Input to Output (PEIO) ratio, to assess the process energy efficiency, hence, the potential sustainability. Results indicate that the PEIO correspond to 10.5–64.0% and 34.1–55.0% for single feedstock digestion and feedstock co-digestion, respectively. Energy balance was assessed to be negative for feedstock transportation distances in excess of 22 km and 425 km for cattle manure and for Municipal Solid Waste, respectively, which defines the operational limits for respective feedstock transportation. Energy input was highly influenced by the characteristics of feedstock used. For example, agricultural waste, in most part, did not require pre-treatment. Energy crop feedstock required the respect cultivation energy inputs, and processing of industrial waste streams included energy-demanding pre-treatment processes to meet stipulated hygiene standards. Energy balance depended on biogas yield, the utilization efficiency, and energy value of intended fossil fuel substitution. For example, obtained results suggests that, whereas the upgrading of biogas to biomethane for injection into natural gas network potentially increased the primary energy input for biogas utilization by up to 100%; the energy efficiency of the biogas system improved by up to 65% when natural gas was substituted instead of electricity. It was also found that, system energy efficiency could be further enhanced by 5.1–6.1% through recovery of residual biogas from enclosed digestate storage units. Overall, this study provides bases for more detailed assessment of environmental compatibility of energy efficiency pathways in biogas production and utilization, including management of spent digestate.  相似文献   

12.
Forage radish, a winter cover crop, was investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Batch digesters (300 cm3) were operated under mesophilic conditions during two experiments (BMP1; BMP2). In BMP1, the effect of co-digesting radish and manure on CH4 and H2S production was determined by increasing the mass fraction of fresh above-ground radish in the manure-based co-digestion mixture from 0 to 100%. Results showed that forage radish had 1.5-fold higher CH4 potential than dairy manure on a volatile solids basis. While no synergistic effect on CH4 production resulted from co-digestion, increasing the radish fraction in the co-digestion mixture significantly increased CH4 production. Initial H2S production increased as the radish fraction increased, but the sulfur-containing compounds were rapidly utilized, resulting in all treatments having similar H2S concentrations (0.10–0.14%) and higher CH4 content (48–70%) in the biogas over time. The 100% radish digester had the highest specific CH4 yield (372 ± 12 L kg−1 VS). The co-digestion mixture containing 40% radish had a lower specific CH4 yield (345 ± 2 L kg−1 VS) but also showed significantly less H2S production at start-up and high quality biogas (58% CH4). Results from BMP2 showed that the radish harvest date (October versus December) did not significantly influence radish C:N mass ratios or CH4 production during co-digestion with dairy manure. These results suggest that dairy farmers could utilize forage radish, a readily available substrate that does not compete with food supply, to increase CH4 production of manure digesters in the fall/winter.  相似文献   

13.
Thermophilic anaerobic digestion (AD) is an efficient treatment process for waste activated sludge with enhanced hydrolysis and digestion rates. However, the costs associated with maintaining high temperature for thermophilic digester should be minimized and the thermal stability of the reactor should be maximized for its practical use. This study tested an integrated system consisting of a solar pond and an AD reactor for digestion of waste activated sludge. The integrated system could be stably operated at 51.6 ± 1.5 °C in sunny days (and nights) and maintained digestion performance over at least three days with cloud and rain. On the contrary, the control reactor without solar pond experienced significant temperature fluctuation and poor digestion performance. After 29d, the integrated system thermophilic reactor removed 65.0 ± 4.2% of total chemical oxygen demands and produced 79% excess biogas. The concentrations of soluble chemical oxygen demand, protein and saccharides in digester with solar pond were higher than those in that without the pond. Also, the presence of solar pond enhanced hydrolysis and degradation of soluble microbial byproduct-like compounds with carboxylic groups and amide-2 groups in sludge.  相似文献   

14.
This paper presents the results obtained for the digestion of primary sludge (PS) and co-digestion of this sludge with the fruit and vegetable fraction of municipal solid wastes (FVFMSW) under mesophilic conditions. This mixture was prepared with a PS content of 22%. The anaerobic digestion process was evaluated under static conditions and with different mixing conditions, with good results being found for the digesters with limited mixing, this representing an energy saving. The results for co-digestion of mixtures of PS+FVFMSW are better than those obtained from digestion of PS on its own. Biogas production for co-digestion is much greater thanks to the larger volatile-solid (VS) content of this feedstock. Nevertheless, biogas yield and specific gas production for the two digestion processes are similar, with values in the range 0.6–0.8 l g−1 VS destroyed for the first parameter and in the range 0.4–0.6 l g−1 VS fed for the second. The co-digestion process was also evaluated at different organic loading rates (OLR) under low mixing conditions, with stable performance being obtained even when the systems were overloaded.  相似文献   

15.
To construct a system for the effective hydrogen production from food waste, the conditions of anaerobic digestion and biogas reforming have been investigated and optimized. The type of agitator and reactor shape affect the performance of anaerobic digestion reactors. Reactors with a cubical shape and hydrofoil agitator exhibit high performance due to the enhanced axial flow and turbulence as confirmed by simulation of computational fluid dynamics. The stability of an optimized anaerobic digestion reactor has been tested for 60 days. As a result, 84 L of biogas is produced from 1 kg of food waste. Reaction conditions, such as reaction temperature and steam/methane ratio, affect the biogas steam reforming reaction. The reactant conversions, product yields, and hydrogen production are influenced by reaction conditions. The optimized reaction conditions include a reaction temperature of 700 °C and H2O/CH4 ratio of 1.0. Under these conditions, hydrogen can be produced via steam reforming of biogas generated from a two-stage anaerobic digestion reactor for 25 h without significant deactivation and fluctuation.  相似文献   

16.
Blue mussels and reeds were explored as a new biomass type in the Kalmar County of Sweden to improve renewable transport fuel production in the form of biogas. Anaerobic digestion of blue mussels and reeds was performed at a laboratory-scale to evaluate biogas production in a two-stage dry digestion system. The two-stage system consisted of a leach bed reactor and an upflow anaerobic sludge blanket (UASB) reactor. The two-stage system was efficient for the digestion of blue mussels, including shells, and a methane yield of 0.33 m3/kg volatile solids (VS) was obtained. The meat fraction of blue mussels was easily solubilised in the leach bed reactor and the soluble organic materials were rapidly converted in the UASB reactor from which 68% of the methane was produced. However, the digestion of mussels including shells gave low production capacity, which may result in a less economically viable biogas process. A low methane potential, 0.22 m3/kg VS, was obtained in the anaerobic two-stage digestion of reeds after 107 days; however, it was comparable to similar types of biomass, such as straw. About 80% of the methane was produced in the leach bed reactor. Hence, only a leach bed reactor (dry digestion) may be needed to digest reed. The two-stage anaerobic digestion of blue mussels and reeds resulted in an energy potential of 16.6 and 10.7 GWh/year, respectively, from the estimated harvest amounts. Two-stage anaerobic digestion of new organic materials such as blue mussels and reeds can be a promising biomass resource as land-based biomass start to be limited and conflict with food resources can be avoided.  相似文献   

17.
This study investigates the co-digestion of poultry manure (PM) with sugar beet pulp residues (SBPR) obtained from saccharification and dewatering of sugar beet pulp. The laboratory-scale experiments were conducted under batch and semi-continuous conditions at mesophilic temperatures (35 °C). Batch tests gave specific biogas and methane yields of 590 dm3/kgVSfed and 423 dm3CH4/kgVSfed, respectively for SBPR, whereas the corresponding values for PM were 434 dm3/kgVSfed and 300 dm3CH4/kgVSfed. The co-digestion of PM with SBPR was found to increase biogas and methane yields compared to the manure alone. In semi-continuous reactor experiments, the highest methane yield of 346 dm3 CH4/kgVSfed was achieved for the mixture containing poultry manure with 50% SBPR (weight basis) and a solids retention time (SRT) of 20 days. However, when poultry manure was digested as a sole feedstock, the biogas production was inhibited by ammonia, whereas the co-digestion of PM with 25% SBPR was slightly affected by volatile fatty acids, which concentrations exceeded 4000 g/m3.  相似文献   

18.
This study investigates enhancing the biogas production of sunnhemp by pretreatment, before the anaerobic digestion and co-digestion processes, to address the complex and recalcitrant structure of the plant. Fresh sunnhemp harvested at a cutting interval of 50 days is used in the study. Five systems (each with a 5 litre useable volume) are operated semi-continuously with five different ratios of the feedstock by feeding separate feedstocks every five days with a hydraulic retention time (HRT) of 40 days. The system operates at room temperature (30 °C). The study uses sunnhemp as 20% of the feedstock and also considers sunnhemp mixed with cow manure at different ratios, with the weighed sunnhemp being pretreated with dilute sodium hydroxide. Pretreatment of sunnhemp before digestion produces a methane (CH4) yield 89% greater than that of the untreated sunnhemp. It requires 3.597 kg of dry sunnhemp to produce 1 m3 of CH4 and the annual CH4 yield per hectare is 19,015 m3. In the pretreatment of sunnhemp before co-digestion, the increased CH4 yield depends on the amount of pretreated sunnhemp in the feedstocks. However, the %CH4, the CH4 production level and the system stability depend on the optimal ratio of the sunnhemp to cow manure. The initially prepared sunnhemp to cow manure ratio is recommended at 10 g:10 g in 80 mL of water. At this ratio, the %CH4 and the CH4 yield are 53.84% and 313 kg chemical oxygen demand (COD) removed, respectively, and the COD removal efficiency is 56.4%. Sunnhemp has high potential and it is worth pretreating before producing biogas. Using sunnhemp to produce biogas is recommended to decrease greenhouse gas emissions and mitigate global warming.  相似文献   

19.
Chinese food waste (CFW) and Tall fescue (Tf) are obtainable at low cost, and the digestibility of the mixture is superior to mono-digestion. The major objective of this study was to determine optimal CFW/Tf ratio and organic loading rate (OLR) for biogas yields and organics removal rate in batch and hydraulic pressure semi continuous anaerobic treatment. Batch digestion of mixed substrates was carried out at CFW/Tf ratios of 8.89, 2.75, 1.52, 0.99 and 0.7 based on volatile solid (VS). For CFW/Tf ratio of 1.52, increasing OLR in hydraulic pressure semi continuous digester was evaluated. Results showed that positive synergistic effects of co-digestion took place at CFW/Tf ratios of 1.52 and 0.99. In semi continuous anaerobic digester, the reliability daily methane yield and effective organic matter removal was observed at OLR of 15.8 g VS/(L·d). This study showed that the co-digestion of CFW and Tf improved biogas yield and degradation efficiency. The improved characteristics indicated the co-digestion process had better stability.  相似文献   

20.
Autogenerative high pressure digestion (AHPD) provides an integrated biogas upgrading technology, capable of producing biogas with a CH4 content exceeding 95% at pressures up to 90 bar. Hydrolysis is generally regarded as the rate-limiting step in the anaerobic digestion of complex organic matter, governing the volatile fatty acid (VFA) production rate for subsequent conversion to methane. Starch hydrolysis rates in AHPD systems were studied and the potential risk for VFA accumulation was assessed. Under the anticipated practical moderate pressure conditions at 30 °C, experimental CH4-content of the biogas improved from 49 to 73 ± 2% at atmospheric and elevated pressure, respectively. Furthermore, no significant effect of pressure on the hydrolysis was found. Like under atmospheric pressure, gelatinisation was the rate-limiting step for particulate starch (0.05 d−1) and saccharification for gelatinised starch (0.1 d−1). Because no effect was observed on starch, an effect on the hydrolysis rate of more complex organic matter like (ligno-)cellulose is also not anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号