首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents an overview on the research and development and application aspects for the hybrid photovoltaic/thermal (PV/T) collector systems. A major research and development work on the photovoltaic/thermal (PVT) hybrid technology has been done since last 30 years. Different types of solar thermal collector and new materials for PV cells have been developed for efficient solar energy utilization. The solar energy conversion into electricity and heat with a single device (called hybrid photovoltaic thermal (PV/T) collector) is a good advancement for future energy demand. This review presents the trend of research and development of technological advancement in photovoltaic thermal (PV/T) solar collectors and its useful applications like as solar heating, water desalination, solar greenhouse, solar still, photovoltaic-thermal solar heat pump/air-conditioning system, building integrated photovoltaic/thermal (BIPVT) and solar power co-generation.  相似文献   

2.
This paper presents an improved design of a photovoltaic/thermal (PV/T) solar collector integrating a PV panel with a serpentine-shaped copper tube as the water heating component and a single pass air channel as the air heating component. In addition to the electricity generated, this type of collector enables the production of both hot air and water, increasing the total efficiency per unit area compared to the conventional PV/T solar collector. The use of both fluids (bi-fluid) also creates a greater range of thermal applications and offers options in which hot and/or cold air and/or water can be utilized depending on the energy needs and applications. In this paper, the design concept of the bi-fluid PV/T solar collector is emphasized with 2D steady state energy balance equations for the bi-fluid configuration are developed, validated and used to predict the performance of the bi-fluid solar collector for a range of mass flow rates of air and water. The performance of the collector is then compared when the fluids are operated independently and simultaneously. The simulations indicate that when both fluids are operated independently the overall thermal and electrical performance of the solar collector is considered as satisfactory and when operated simultaneously the overall performance is higher. The bi-fluid PV/T solar collector discussed in this paper will add insights to the new knowledge of optimizing the utilization of solar energy by a PV/T solar collector and has potential applications in various fields.  相似文献   

3.
A computer simulation model is presented for the analysis of a solar photovoltaic/thermal (PV/T) hybrid collector with air as heat transfer fluid and algorithm for making quantitative prediction regarding the performance of the system is described. Thermal efficiency curves for the solar PV/T hybrid collectors corresponding to various type of absorbers have been derived. In order to appreciate the model, numerical calculations have been made for evaluating the system performance corresponding to typical climate of Delhi, India  相似文献   

4.
The idea of combining photovoltaic and solar thermal collectors (PVT collectors) to provide electrical and heat energy is an area that has, until recently, received only limited attention. Although PVTs are not as prevalent as solar thermal systems, the integration of photovoltaic and solar thermal collectors into the walls or roofing structure of a building could provide greater opportunity for the use of renewable solar energy technologies. In this study, the design of a novel building integrated photovoltaic/thermal (BIPVT) solar collector was theoretically analysed through the use of a modified Hottel-Whillier model and was validated with experimental data from testing on a prototype BIPVT collector.The results showed that key design parameters such as the fin efficiency, the thermal conductivity between the PV cells and their supporting structure, and the lamination method had a significant influence on both the electrical and thermal efficiency of the BIPVT. Furthermore, it was shown that the BIPVT could be made of lower cost materials, such as pre-coated colour steel, without significant decreases in efficiency.Finally, it was shown that by integrating the BIPVT into the building rather than onto the building could result in a lower cost system. This was illustrated by the finding that insulating the rear of the BIPVT may be unnecessary when it is integrated into a roof above an enclosed air filled attic, as this air space acts as a passive insulating barrier.  相似文献   

5.
In this paper, an exergetic optimization has been developed to determine the optimal performance and design parameters of a solar photovoltaic thermal (PV/T) air collector. A detailed energy and exergy analysis has been carried out to calculate the thermal and electrical parameters, exergy components, and exergy efficiency of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open‐circuit voltage, short‐circuit current, maximum power point voltage, maximum power point current, etc. An improved electrical model has been used to estimate the electrical parameters of a PV/T air collector. Furthermore, a new equation for the exergy efficiency of a PV/T air collector has been derived in terms of design and climatic parameters. A computer simulation program has been also developed to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Moreover, the simulation results obtained in this paper are more precise than the one given by the previous literature, and the new exergy efficiency obtained in this paper is in good agreement with the one given by the previous literature. Finally, exergetic optimization has been carried out under given climatic, operating, and design parameters. The optimized values of inlet air velocity, duct length, and the maximum exergy efficiency have been found. Parametric studies have been also carried out. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The objective of this work is to simulate a water-based flat plate photovoltaic/thermal system with glass cover and without it in laminar and turbulent regime and investigating the effects of solar irradiation, packing factor, Reynolds number, collector length, pipes diameter and number of pipes on the performance of this system. The accuracy of the model has been validated with the available data in the literature, where good agreements between the results have been achieved. The results showed that the energy efficiency in the glazed photovoltaic/thermal system is higher than unglazed one, while its exergy efficiency depends on the packing factor, Reynolds number and collector length. The results also indicated that increasing of solar radiation and packing factor increases total energy and exergy efficiency in both laminar and turbulent regime. Besides, it was found that there are the optimum values for mass flow rate and number of pipes that maximize exergy efficiency. The value of the optimum mass flow rate is larger in the case of unglazed system compared to that of glazed one. Furthermore, in most cases, the total energy efficiency in turbulent regime is higher, whereas the total exergy efficiency in laminar regime is superior.  相似文献   

7.
In this paper, an attempt is made to investigate the thermal and electrical performance of a solar photovoltaic thermal (PV/T) air collector. A detailed thermal and electrical model is developed to calculate the thermal and electrical parameters of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open-circuit voltage, short-circuit current, maximum power point voltage, maximum power point current, etc. Some corrections are done on heat loss coefficients in order to improve the thermal model of a PV/T air collector. A better electrical model is used to increase the calculations precision of PV/T air collector electrical parameters. Unlike the conventional electrical models used in the previous literature, the electrical model presented in this paper can estimate the electrical parameters of a PV/T air collector such as open-circuit voltage, short-circuit current, maximum power point voltage, and maximum power point current. Further, an analytical expression for the overall energy efficiency of a PV/T air collector is derived in terms of thermal, electrical, design and climatic parameters. A computer simulation program is developed in order to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, parametric studies have been carried out. Since some corrections have been down on thermal and electrical models, it is observed that the thermal and electrical simulation results obtained in this paper is more precise than the one given by the previous literature. It is also found that the thermal efficiency, electrical efficiency and overall energy efficiency of PV/T air collector is about 17.18%, 10.01% and 45%, respectively, for a sample climatic, operating and design parameters.  相似文献   

8.
In this paper, the optimization of a solar photovoltaic thermal (PV/T) water collector which is based on exergy concept is carried out. Considering energy balance for different components of PV/T collector, we can obtain analytical expressions for thermal parameters (i.e. solar cells temperature, outlet water temperature, useful absorbed heat rate, average water temperature, thermal efficiency, etc.). Thermal analysis of PV/T collector depends on electrical analysis of it; therefore, five-parameter current–voltage (IV) model is used to obtain electrical parameters (i.e. open-circuit voltage, short-circuit current, voltage and current at the point which has maximum electrical power, electrical efficiency, etc.). In order to obtain exergy efficiency of PV/T collector we need exergy analysis as well as energy analysis. Considering exergy balance for different components of PV/T collector, we obtain the expressions which show the exergy of the different parts of PV/T collector. Some corrections have been done on the above expressions in order to obtain a modified equation for the exergy efficiency of PV/T water collector. A computer simulation program has been developed in order to obtain the amount of thermal and electrical parameters. The simulation results are in good agreement with the experimental data of previous literature. Genetic algorithm (GA) has been used to optimize the exergy efficiency of PV/T water collector. Optimum inlet water velocity and pipe diameter are 0.09 m s−1, 4.8 mm, respectively. Maximum exergy efficiency is 11.36%. Finally, some parametric studies have been done in order to find the effect of climatic parameters on exergy efficiency.  相似文献   

9.
In an effort to reduce the cost of conventional fin and tube photovoltaic thermal (PV/T) collectors a novel mathematical analysis was developed which determines the optimum absorber plate configuration having the least material content and thus cost, whilst maintaining high collection efficiency.The analysis was based on the “low-flow” concept whose advantages include: improved system performance, smaller pump (less expensive with lower power consumption), smaller diameter tubes requiring lower thickness and thus cost of insulation, less construction power and time for the optimum absorber configuration.From the optimization methodology developed it was found that very thin fins (typically 50 μm) and small tubes (of 1.65 mm inside diameter for the risers, in the header and riser arrangement and 4.83 mm for the serpentine arrangement), with a tube spacing of 62 mm and 64 mm (both corresponding to 97% fin efficiency) and a mass of 1.185 kg/m2 and 2.140 kg/m2, respectively, can be used. This optimum serpentine absorber plate contains 40.50% less material content and mass, as compared to the serpentine prototype proposed by others. In one such design a mass of 3.596 kg/m2 was used (with 10 mm diameter tubes, 95 mm tube spacing and 200 μm thick absorber).To predict the performance of the determined optimum configurations, a steady-state model (using the EES code) was developed. To validate the steady-state model two prototypes, one in Header and Riser and the other in Serpentine configuration, were built and tested. It was found from the experiments that there is a good agreement between the computational and the experimental results. Moreover, it was found that optimum PV/T configurations do indeed have thermal and electrical performance comparable to non-optimum ones of greater mass and cost.  相似文献   

10.
In this paper, an integrated combined system of a photovoltaic (glass–glass) thermal (PV/T) solar water heater of capacity 200 l has been designed and tested in outdoor condition for composite climate of New Delhi. An analytical expression for characteristic equation for photovoltaic thermal (PV/T) flat plate collector has been derived for different condition as a function of design and climatic parameters. The testing of collector and system were carried out during February–April, 2007. It is observed that the photovoltaic thermal (PV/T) flat plate collector partially covered with PV module gives better thermal and average cell efficiency which is in accordance with the results reported by earlier researchers.  相似文献   

11.
In the present investigation a theoretical analysis has been presented for the modelling of thermal and electrical processes of a hybrid PV/T air heating collector coupled with a compound parabolic concentrator (CPC). In this design, several CPC troughs are combined in a single PV/T collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for the various components of the system. Based on the developed analysis, both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
This study focuses on the optimal configuration and suitable flow rate in photovoltaic thermal (PV/T) system. Design and verification were carried out by finite element method (FEM) to solve computational fluid dynamic (CFD) problem and to determine the suitable flow in a collector system. COMSOL MULTIPHYSICS® software was used for the analysis. The computed results were then comparatively evaluated against a set of result samples obtained from testing data of the 16 modules of PV/T system—a configuration with 4 strings (horizontal-axis) of 4 modules in-series (vertical-axis) (4×4). The redesign of PV/T system was further studied by changing the system configuration from a 4×4 configuration to simulate various configurations consisting of 8×2, 3×4, 4×3 and 6×2. For the same number of PV/T module (16), the 4×4 configuration provided better flow distribution, when compared with an 8×2 configuration. When decreasing to 12 modules, it was shown that the 3×4 configuration resulted in the most suitable flow distribution, compared with the 4×3 and 6×2 configurations. From these results, it can be concluded that the number of strings used was inversely proportional to the flow distribution quality. Experimental results have also shown that the optimized flow rate for the 4×4 configuration was approximately 1-3 L/min.  相似文献   

13.
A numerical and experimental study on a heat pipe PV/T system   总被引:3,自引:0,他引:3  
Pei Gang 《Solar Energy》2011,85(5):911-144
A novel heat-pipe photovoltaic/thermal system was designed and constructed by the authors. This system can simultaneously supply electrical and thermal energy. In addition, when compared with the traditional water-type photovoltaic/thermal system, this system can be used in cold regions without freezing. A dynamic model was developed to predict the performances of the heat-pipe photovoltaic/thermal system. Experiments were also conducted to validate results obtained for the simulation. A comparison between simulation values and experimental results demonstrated that the model was able to yield satisfactory predictions. Results indicated that the daily thermal and electrical efficiencies of the heat-pipe photovoltaic/thermal system were 41.9% and 9.4%, respectively, while the average heat and electrical gains were 276.9 and 62.3 W/m2, respectively. In addition, second-law efficiency, based on the second law of thermodynamics, is provided to analyze the total efficiency of the heat-pipe photovoltaic/thermal system, and the average total second-law efficiency of the system is 6.8%.  相似文献   

14.
The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPC and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic/thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPC) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. Energy balance equations have been developed for the various nodes of the system. Both thermal and electrical performance of the collector are presented and discussed.  相似文献   

15.
In order to get more power and heat from PV/T system, it is necessary to cool the PV cell and decrease its temperature. This is not an easy task especially in hot and humid climate areas. There is a lack of an effective cooling strategy of PV/T panels. The liquid based photovoltaic thermal collector systems are practically more desirable and effective than air based systems. Temperature fluctuation in liquid based PV/T is much less than the air based PV/T collectors which subjected to variation in solar radiation levels. In this study a review of the available literature on PV/T collector systems which utilize water and refrigerant (working fluid) as heat removal medium for different applications has been conducted. Future direction of water-cooled and refrigerant hybrid photovoltaic thermal systems was presented. This study revealed that the direct expansion solar-assisted heat pump system achieved better cooling effect of the PV/T collector.  相似文献   

16.
A polymer solar heat collector was combined with single-crystal silicon PV cells in a hybrid energy-generating unit that simultaneously produced low temperature heat and electricity. The PV/T unit was tested experimentally to determine its thermal and photovoltaic performance, in addition to the interaction mechanisms between the PV and thermal energy systems. Thermal efficiency measurements for different collector configurations are compared, and PV performance and temperature readings are presented and discussed. An analytical model for the PV/T system simulated the temperature development and the performance of both the thermal and photovoltaic units.  相似文献   

17.
Guoying Xu  Shiming Deng  Lei Yang 《Solar Energy》2009,83(11):1967-1976
A new photovoltaic/thermal heat pump (PV/T-HP) system having a modified collector/evaporator (C/E) has been developed and numerically studied. Multi-port flat extruded aluminum tubes were used in the modified C/E, as compared to round copper tubes used in a conventional C/E. Simulation results suggested that a better operating performance can be achieved for a PV/T-HP system having such a modified C/E. In addition, using the meteorological data in both Nanjing and Hong Kong, China, the simulation results showed that this new PV/T-HP system could efficiently generate electricity and thermal energy simultaneously in both cities all-year-round. Furthermore, improved operation by using variable speed compressor has been designed and discussed.  相似文献   

18.
In the present investigation, the authors have developed a computer simulation model for predicting the transient performance of a conventional photovoltaic/thermal (PV/T) air heating collector with single- and double-glass configurations. In order to appreciate the model, numerical calculations have been made to evaluate the system performance corresponding to typical climate of Delhi, India. It has been observed that the hybrid PV/T systems are interesting in respect to system efficiencies, however, their adaptability in future must be weighed in terms of cost effectiveness of these systems. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
20.
In this communication, an attempt has been made to evaluate exergy analysis of a hybrid photovoltaic–thermal (PV/T) parallel plate air collector for cold climatic condition of India (Srinagar). The climatic data of Srinagar for the period of four years (1998–2001) has been obtained from Indian Metrological Department (IMD), Pune, India. Based on the data four climatic conditions have been defined. The performance of a hybrid PV/T parallel plate air collector has been studied for four climatic conditions and then exergy efficiencies have been carried out. It is observed that an instantaneous energy and exergy efficiency of PV/T air heater varies between 55–65 and 12–15%, respectively. These results are very close to the results predicted by Bosanac et al. [Photovoltaic/thermal solar collectors and their potential in Denmark. Final Report, EFP Project, 2003, 1713/00-0014, www.solenergi.dk/rapporter/pvtpotentialindenmark.pdf].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号