首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superfine zeolite (SFZ) is a natural zeolite ground to higher fineness than cement. Being a pozzolanic material, it can be used to replace part of the cement to reduce the cement consumption and carbon footprint of concrete production. In this study, in order to evaluate the effects of SFZ on strength and fresh properties, a total of 30 cementitious paste mixes with different SFZ contents and different W/CM ratios were produced for 7-day, 28-day, 70-day strength tests, and flowability and cohesiveness tests. And, to evaluate the effectiveness of SFZ as a superfine filler, the changes in packing density and water film thickness (WFT) due to the addition of SFZ were measured and determined. It was found that the addition of SFZ as cement replacement up to 20% slightly decreased the early strength, but slightly increased the long-term strength. Moreover, it increased the packing density and exerted its influence on the fresh properties of cementitious paste through the corresponding change in WFT. It also significantly increased the cohesiveness at the same flowability.  相似文献   

2.
Previous research demonstrated that the packing density, water film thickness and paste film thickness have great effects on the performance of a concrete mix. On this basis, it is herein proposed a strategy of adding a powder waste as both paste and aggregate replacements to reduce the cement and aggregate consumptions for sustainable development and to improve the packing densities of both the paste phase and aggregate phase for performance improvement. To evaluate such strategy, 25 concrete mixes incorporating granite polishing waste (GPW) as paste and aggregate replacements were tested. The results revealed that the addition of GPW as paste replacement up to 7.5% and as aggregate replacement up to 10% would most effectively increase the packing densities of the paste phase, aggregate phase and whole concrete mix, and thereby increasing the strength of the concrete, despite reduction in cement content. Such increases in packing density would also increase the excess water and excess paste to avoid excessive reductions in the water and paste film thicknesses, which are needed to maintain workability. Last but not least, separate optimization of the paste phase and aggregate phase is an effective way of optimizing the concrete mix design.  相似文献   

3.
应用正交试验法开展了16组玄武岩-碳纤维(BF-CF)/矿渣混凝土和1组C40级基准混凝土的塌落度、立方体抗压强度和劈裂抗拉强度试验,研究了BF、CF和矿渣三种因素对BF-CF/矿渣混凝土力学性能的影响。结果表明:BF-CF/矿渣混凝土立方体抗压强度和劈裂抗拉强度均高于C40基准混凝土,立方体抗压强度最大提高了21.0%,劈裂抗拉强度最大提高了35.3%。BF和CF的掺入均会减小混凝土的塌落度,BF对于塌落度的减小更加明显,BF对塌落度的最大降幅为67.1%;矿渣代砂率是影响BF-CF/矿渣混凝土立方体抗压强度的显著因素,随着矿渣代砂率的增大,立方体抗压强度先增大后减小,矿渣对立方体抗压强度的最大提高幅度为7.6%;BF是影响BF-CF/矿渣混凝土劈裂抗拉强度的显著因素,劈裂抗拉强度随BF体积率的增加而增大,BF对劈裂抗拉强度的最大增幅为12.0%,CF对劈裂抗拉强度的提升不明显。对正交试验的结果进行回归分析得出BF-CF/矿渣混凝土立方体抗压强度和劈裂抗拉强度预测模型,模型精度较高。   相似文献   

4.
Superfine cement is a cement ground to a much higher fineness than ordinary cement. The addition of a small quantity of superfine cement to fill into the voids of ordinary cement can improve the packing density of the cement and thereby reduce the amount of mixing water needed to fill the voids. In this study, the effects of superfine cement on the packing density of cement (directly measured by a wet packing test), the water film thickness of cement paste (taken as the excess water to solid surface area ratio), and the flowability, rheology and strength of cement paste were investigated. The results showed that the addition of 10% to 20% superfine cement can significantly increase the packing density of the cement and the water film thickness of the cement paste. Such increases in packing density and water film thickness would then improve the flowability, rheology and strength of the cement paste. Hence, superfine cement is an effective cementitious filler for improving cement performance.  相似文献   

5.
The study presented here investigates the effect of density in cementitious mortar on its mechanical properties under quasi-static loading. The reduction in density was achieved through the addition of expanded perlite as a lightweight aggregate into cement paste by volume replacement of cement in the ratio from 0 to 8. This yielded a range of densities between 1000 and 2000 kg/m3. The compressive and flexural response of these mixes were determined for geometrically scaled specimens to study the size effect. Some mixes were reinforced with polymer microfibres and the Mode I fracture toughness parameters were evaluated through flexural testing of notched beams. When compared with a reference Portland cement paste, the compressive strength and elastic modulus scaled as the cube of the density, while the fracture toughness varied linearly with it. The study shows that the specimen size effect on compressive and flexural strength decreases with a drop in the density of the mix and also with fibre reinforcement. On the other hand, the specimen size effect on the critical crack mouth opening displacement was more pronounced at lower densities.  相似文献   

6.
An experimental investigation was undertaken to study the potential use of Jordanian oil shale ash (OSA) as a raw material or an additive to Portland cement mortar and concrete. Different series of mortar and concrete mixtures were prepared at different water to binder ratios, and different OSA replacements of cement and/or sand. The compressive strength of mortar and concrete specimens, cured in water at 23 °C, was determined over different curing periods which ranged from 3 to 90 days. The results of these tests were subjected to a statistical analysis. Equations were developed by regression analysis techniques to relate the effect of batch constituents on the strength developments of OSA mortars and concretes. The models were checked for accuracy by comparing their predictions with actual test results.The obtained results indicated that OSA replacement of cement, sand or both by about 10% (by wt) would yield the optimum compressive strength, and that its replacement of cement by up to 30% would not reduce its compressive strength, significantly. It was found that OSA on its own possesses a limited cementitious value and that its contribution to mortar or concrete comes through its involvement in the pozzolanic reactions. The statistical model developed showed an excellent predictability of the compressive strength for mortar and concrete mixes.  相似文献   

7.
Wastepaper sludge ash (WSA) requires relatively higher proportions of water than Portland cement (PC) when used as a single binder. This high water demand may be reduced by the addition of secondary binders such as ground granulated blastfurnace slag (GGBS), which improves the hydration properties of the mixes. Based on the already determined physico-chemical properties of WSA a new method of paste preparation is introduced which also enhances the cementitious properties of WSA. The method utilises a wet-grinding stage prior to mixing. Pre-treatment of WSA prior to the addition of GGBS enhances effectively the strength development of the blended binder. Higher compressive strengths are obtained for the paste cube samples made using the new method of paste preparation than those achieved by conventional dry mixing methods.  相似文献   

8.
This study focuses on the measurement of the ultimate flexural and tensile strength of GUSMRC, a new class of green ultra-high performance fiber reinforced cementitious composites (GUHPFRCCs) in which 75% of the volume contains ultrafine palm oil fuel ash (UPOFA). This green concrete is currently under development at the Universiti Sains Malaysia (GUSMRC). The main objective of this study is to investigate the potential of UPOFA as a partial binder replacement for the ultimate flexural and uniaxial tensile strength of GUSMRC mixtures. Results showed that UPOFA enhances the flexural and uniaxial tensile responses of fresh UHPFRCCs. The highest flexural and uniaxial tensile strength values at the 50% replacement level after 28 days were at 42.38 MPa and 13.35 MPa, respectively, indicating the potential of utilizing UPOFA as an efficient pozzolanic mineral admixture for the production of GUSMRC with superior engineering properties.  相似文献   

9.
The influence of location relative to the casting position, on porosity and pore size distribution of cement pastes, was investigated. Three different pastes were prepared at a constant water/binder ratio of 0.45. The pastes were the control paste (CP) in which Portland cement was used and no cement replacement materials were added, pastes with 22% and 9% replacement (by mass) of cement with fly ash (FA) and silica fume (SF), respectively. Paste specimens were cast in cube moulds and were either cured in air at a temperature of 45 °C and relative humidity of 25% for 28 days or moist cured for 14 days after casting at 45 °C, followed by air curing at 45 °C and 25% relative humidity for further 14 days. Samples were taken from various locations of the cube specimens. Porosity and pore size distribution were conducted on the paste samples using the mercury intrusion porosimetry technique.The results show that large differences in porosity and pore size distribution exist between samples taken from different locations relative to casting positions. These differences are larger in pastes subjected to dry curing as compared to pastes subjected to some initial moist curing. The influence of sample location relative to casting position on porosity and pore size distribution of paste is compared with absorption of concrete performed in a previous investigation. The correlation between pore volume of paste and water absorption of concrete is also conducted.  相似文献   

10.
研究聚酯纤维长径比、掺量对混凝土抗压强度、抗折强度、劈裂抗拉强度、断裂韧性及冲击荷载等力学性能的影响;运用复合材料理论和纤维间距理论对聚酯纤维/混凝土增韧阻裂机制进行研究,结合SEM观察微观形貌分析纤维长径比与掺量对增韧阻裂机制的影响;采用正交试验设计方法及激光扫描共聚焦显微镜(LSCM)研究冲击高度、试件厚度、长径比及掺量对纤维/混凝土抗冲击性能的影响。结果表明,长径比为300与600的聚酯纤维会降低混凝土抗压强度,低掺量长径比为150的聚酯纤维通过提高混凝土致密程度使混凝土抗压强度有所提升;在抗拉强度方面长径比为150的聚酯纤维主要以缺陷形式存在,长径比为300的聚酯纤维对改善混凝土内部拉结作用最显著,3%(与胶凝材料体积比)掺量聚酯纤维对提高混凝土抗折强度最显著;对于混凝土断裂韧性,长径比为300与600的聚酯纤维/混凝土断裂韧性提高明显,通过SEM微观形貌发现纤维拉结作用产生的微裂纹会提高混凝土耗能能力,从而提高混凝土极限荷载与破坏时中心挠度,长径比为300的聚酯纤维/混凝土抗拉强度变化规律与复合材料理论和纤维间距理论分析结果较吻合;冲击高度为影响冲击荷载大小的主要因素,纤维长径比较纤维掺量影响较大,通过LSCM三维损伤形貌分析得出长径比为150的聚酯纤维对混凝土材料损伤改善效果较显著,同等掺量下长径比为150的聚酯纤维间距较小导致混凝土局部力学性能提高,从而提高混凝土抗冲击性能。   相似文献   

11.
With the ongoing sustainability movement, the incorporation of limestone powder in cementitious binders for concrete in the U.S. has become a subject of renewed interest. In addition to accelerating the early age hydration reactions of cementitious systems by providing additional surfaces for nucleation and growth of products, limestone powder is also intriguing based on its influence on low-temperature curing. For example, previous results have indicated that the utilization of limestone powder to replace one quarter of the fly ash in a high volume fly ash mixture (40–60% cement replacement) produces a reduction in the apparent activation energy for setting for temperatures below 25 °C. In the present study, the relationship between heat release and compressive strength of mortars at batching/curing temperatures of 10 and 23 °C is investigated. For Portland-limestone cements (PLC) with limestone additions on the order of 10%, a higher strength per unit heat release is obtained after only 7 d of curing in lime water. Surprisingly, in some cases, the absolute strength of these mortar cubes measured at 7 d is higher when cured at 10 °C than at 23 °C. Solubilities vs. temperature, reaction stoichiometries and enthalpies, and projected phase distributions based on thermodynamic modeling for the cementitious phases are examined to provide some theoretical insight into this strength enhancement. For a subset of the investigated cements, thermogravimetric analysis, quantitative X-ray diffraction, and scanning electron microscopy are conducted on 7-d paste specimens produced at the two temperatures to examine differences in their reaction rates and the phases produced. The strength enhancement observed in the PLC cements is related to the cement hydration products formed in the presence of carbonates as a function of temperature.  相似文献   

12.
Influence of field recycled coarse aggregate on properties of concrete   总被引:1,自引:0,他引:1  
This paper investigates the influence of different amounts of recycled coarse aggregates obtained from a demolished RCC culvert 15 years old on the properties of recycled aggregate concrete (RAC). A new term called “coarse aggregate replacement ratio (CRR)” is introduced and is defined as the ratio of weight of recycled coarse aggregate to the total weight of coarse aggregate in a concrete mix. To analyze the behaviour of concrete in both the fresh and hardened state, a coarse aggregate replacement ratio of 0, 0.25, 0.50 and 1.0 are adopted in the concrete mixes. The properties namely compressive and indirect tensile strengths, modulus of elasticity, water absorption, volume of voids, density of hardened concrete and depth of chloride penetration are studied. From the experimental results it is observed that the concrete cured in air after 7 days of wet curing shows better strength than concrete cured completely under water for 28 days for all coarse aggregate replacement ratios. The volume of voids and water absorption of recycled aggregate concrete are 2.61 and 1.82% higher than those of normal concrete due to the high absorption capacity of old mortar adhered to recycled aggregates. The relationships among compressive strength, tensile strengths and modulus of elasticity are developed and verified with the models reported in the literature for both normal and recycled aggregate concrete. In addition, the non-destructive testing parameters such as rebound number and UPV (Ultrasonic pulse velocity) are reported. The study demonstrates the potential use of field recycled coarse aggregates (RCA) in concrete.  相似文献   

13.
In order to raise the efficiency of resource utilization, recycling waste rubber particles into concrete as aggregate has been widely accepted. When the size and content of the rubber particles are appropriate, rubberized concrete can achieve many excellent properties. This study investigated the impact of rubber replacement on dynamic compressive and splitting tensile properties of concrete. The split Hopkinson pressure bar tests of rubberized concrete containing 5%, 10%, 15% and 20% volume replacement for sand were completed. The failure modes, stress curves and dynamic strength values of rubberized concrete under high strain rates were recorded. The results reveal that the dynamic compressive and splitting tensile strength of rubberized concrete decrease with increasing rubber content. Meanwhile, peak strain increases with increasing rubber content. Dynamic increase factors (DIFs) of compressive and splitting tensile strength also were calculated, where rubberized concrete shows a stronger strain rate sensitivity. The analysis of specific energy absorption illustrates that rubberized concrete with 15% rubber replacement has the best impact toughness. In addition, ratios of dynamic compressive–tensile strength of rubberized concrete were calculated, which are between 3.82 and 5.39.  相似文献   

14.
Micronized biomass silica (MBS) is an agricultural waste obtained from controlled burning of rice husk and grind in jar mill. This paper investigates the optimum percentage of MBS for the replacement of cement by conducting several experiments with the blended cement paste and mortar with MBS percentages varying from 0, 4, 8 and 12. In addition, hydration products were also investigated in the blended cement paste through X-ray diffraction. Due to the pozzolanic reaction of MBS with cement hydrates, secondary calcium silicate hydrates (CSH) were formed and also MBS which has a potential to reduce the intensity of Ca(OH)2 exhibited improved properties. The experimental results showed that the optimum percentage of MBS for the replacement of cement was 8% for the materials used in this study. The mechanical and durability properties of recycled aggregate concrete by replacing cement with 8% MBS were also carried out and it was found that the concrete exhibited improved properties. There by, using MBS one can overcome the drawbacks of recycled aggregate concrete as it acts as a supplementary cementitious material. Thus, by combining recycled concrete aggregate with MBS will achieve sustainable development.  相似文献   

15.
This paper presents an experimental study of combined effects of curing method and high replacement levels of blast furnace slag on the mechanical and durability properties of high performance concrete. Two different curing methods were simulated as follows: wet cured (in water) and air cured (at 20°C and 65% RH). The concretes with slag were produced by partial substitution of cement with slag at varying amounts of 50–80%. The water to cementitious material ratio was maintained at 0.40 for all mixes. Properties that include compressive and splitting tensile strengths, water absorption by total immersion and by capillary rise, chloride penetration, and resistance of concrete against damage due to corrosion of the embedded reinforcement were measured at different ages up to 90 days. It was found that the incorporation of slag at 50% and above-replacement levels caused a reduction in strength, especially for the early age of air cured specimens. However, the strength increases with the presence of slag up to 60% replacement for the 90 day wet cured specimens. Test results also indicated that curing condition and replacement level had significant effects on the durability characteristics; in particular the most prominent effects were observed on slag blended cement concrete, which performed extremely well when the amount of slag used in the mixture increased up to 80%.  相似文献   

16.
17.
This paper presents the results of an experimental study of the effects of blast furnace slag, different water/(cement + mineral additive) ratios and pumice aggregates on some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice was used as lightweight aggregate. Several properties of self-compacting pumice aggregate lightweight concretes, such as unit weight, flow diameter, T50 time, flow diameter after an hour, V-funnel time, and L-box tests, 7, 28, 90 and 180-day compressive strength, 28-day splitting tensile strength, dry unit weight, water absorption, thermal conductivity and ultrasonic pulse velocity tests, were conducted. For this purpose, 18 series of concrete samples were prepared in two groups. In the first group, pumice aggregate at 100% replacement of natural aggregate was used in the production of self-compacting lightweight aggregate concrete with constant w/(c + m) ratios as 0.35, 0.40, and 0.45 by weight. Furthermore, as a second group, pumice aggregate was used as a replacement of natural aggregate, at the levels of 0, 20, 40, 60, 80, and 100% by volume. Flow diameters, T50 times, paste volumes, 28-day compressive strengths, dry unit weights, thermal conductivities and ultrasonic pulse velocity of self-compacting lightweight aggregate concrete were obtained over the range of 600–770 mm, 3–9 s, 435–540 l/m 3, 10.6–65.0 MPa, 845–2278 kg/m 3, 0.363–1.694 W/mK and 2617–4770 m/s respectively, which satisfies not only the strength requirement of semi-structural lightweight concrete but also the flowing ability requirements and thermal conductivity requirements of self-compacting lightweight aggregate concrete.  相似文献   

18.
Internal cured concrete (ICC) has been recently used in the local and international construction markets. ICC contains surplus amount of water to compensate the shrinkage of the mix and the volumetric changes which result in early-age cracking of concrete. Concrete cracking is a direct result of the shrinkage of the water–cement paste during early stages of the hydration process and continues for a significant amount of time during the life span of the concrete section. Early-stage shrinkage, prior to the concrete hardening, is associated with volumetric changes, until final setting is achieved. Afterward, the reduction in cement paste particle size results in increased voids within the concrete structure. These voids result in increased permeability, additional sulfate and chloride attacks on steel reinforcement, and internal tensile stresses in concrete, which result in significant cracking. ICC uses the additional water added to the mix in counteracting the reduced volume of the concrete. Several techniques are used for internal curing (IC). In this research, water-saturated lightweight aggregates (LWAs) are used in partial replacement of normal weight aggregate as a source of additional water. LWA is submerged in water prior to concrete mixing to absorb a significant amount of water, which is stored within the LWA particles. Once added to the mix, the water is gradually desorbed and compensates the water losses during hydration. Hence, it counteracts the shrinkage induced. Different ICC mixes are developed in this research using two different sizes of LWA, and supplementary binding materials are used to improve compressive strength. ICC compressive strength and reduced shrinkage attained are presented. ICC mixes developed in this research can be successfully used in pouring highway segments and bridge decks with lower cracks and reduced life cycle cost due to reduced maintenance.  相似文献   

19.
Energy consumption and CO2-emission of concrete can be reduced when cement is replaced by secondary materials such as residual products from other industries. However, for the design of such environmentally friendly concretes, predicting its performance is very important. In this article a cyclic design method is presented, which can predict the strength of a concrete mixture based on particle packing technology. In the procedure, the amount of water is estimated from the required workability and calculated packing density. After that, the strength of that mixture is predicted from packing density calculations and the amount of water in the mixture via the cement spacing factor. This cycle is repeated until the mixture composition does not have to be adjusted anymore to comply with the desired performance or strength class. With the presented cyclic design procedure cement contents can be decreased without changing concrete properties in a negative way, thereby saving up to 57 % of Portland cement and reducing CO2-emission with 25 %. This is shown by experimental results of ecological concrete mixtures tested on compressive strength, tensile strength, modulus of elasticity, shrinkage, creep and electrical resistance. The results confirmed that relationships between cube compressive strength, tensile splitting strength and modulus of elasticity correspond to those for normal concrete. The experimental program showed the possibility to use cube compressive strength as the governing design parameter in the cyclic design procedure for ecological concrete. Furthermore, it is shown how the cyclic design method can be used for defined-performance concrete design.  相似文献   

20.
The use of recycled aggregate from construction and demolition waste (CDW) as replacement of fine and coarse natural aggregate has increased in recent years in order to reduce the high consumption of natural resources by the civil construction sector. In this work, an experimental investigation was carried out to investigate the influence of steel fiber reinforcement on the stress–strain behavior of concrete made with CDW aggregates. In addition, the flexural strength and splitting tensile strength of the mixtures were also determined. Natural coarse and fine aggregates were replaced by recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) at two levels, 0% and 25%, by volume. Hooked end steel fibers with 35 mm of length and aspect ratio of 65 were used as reinforcement in a volume fraction of 0.75%. The research results show that the addition of steel fiber and recycled aggregate increased the mechanical strength and modified the fracture process relative to that of the reference concrete. The stress–strain behavior of recycled aggregate concrete was affected by the recycled aggregate and presented a more brittle behavior than the reference one. With the addition of steel fiber the toughness, measured by the slope of the descending branch of the stress–strain curve, of the recycled concretes was increased and their behavior under compression becomes similar to that of the fiber-reinforced natural aggregate concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号