首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
煤储层具有明显的层理特征,而层理间割理裂隙破坏了煤体的连续性和整体性,从而导致煤层渗透率各向异性。针对这一特征,沿垂直煤层层理、平行层理垂直面割理和平行层理垂直端割理三个正交方向取芯,采用自主研发的煤岩三轴吸附解吸渗流试验系统,在不同围压和气体压力下,对煤样的面割理、端割理、垂直层理方向上的渗透率进行测试分析,结果表明:不同气体压力下,无论是割理方向还是垂直层理方向上渗透率均随着围压增大而减小。在气体压力较低时,面割理方向的渗透率较大,气体压力对端割理方向和垂直层理方向渗透率影响不大。  相似文献   

2.
为了描述各向异性煤层与瓦斯耦合过程中的渗透演化规律,在煤体结构为正交各向异性假设的基础上,利用吸附作用下煤体变形叠加关系,建立正交各向异性渗透率方程,进一步推导出考虑煤体正交各向异性特征的气固耦合模型,利用该模型分析了九里山矿二1煤不同吸附压力下渗透率变化规律和亭南矿4#煤层钻孔倾角对抽采效果的影响。结果表明:在相同的围压下,面割理、端割理、垂直层理方向渗透率模拟结果随着瓦斯压力的增大而减小,规律与实验结果一致;渗透率模拟结果和实验结果在面割理、端割理、垂直层理方向的平均相对误差分别是2.55%、14.19%、4.26%,误差分析表明气固耦合模型合理;瓦斯抽采量随着钻孔倾角的增大而增加,在钻孔抽采设计时,增大钻孔与煤层层理面之间角度可以提高瓦斯抽采量。  相似文献   

3.
为研究煤层气开发过程中有效应力增加对煤储层孔渗各向异性的影响,采用不同方向的煤岩样品对沁水盆地南部煤层气储层各向异性进行了评价。结果表明,煤层气储层孔隙度和孔隙结构具有明显各向异性特征:面割理方向核磁共振曲线为双峰型,以大孔、割理为主;端割理方向为宽底单峰型,以中孔为主;垂直煤层理方向为单峰型,中、小孔发育。有效应力加载至10 MPa后,3个方向核磁共振信号强度均降低,表明煤样部分孔隙被压缩、割理闭合。煤层气储层渗透率具有明显各向异性特征:面割理方向渗透率达到垂直层理方向的9倍以上;随有效应力增加,储层各向异性程度降低,但面割理方向与垂直层理方向渗透率异质程度最强。煤层气储层应力敏感性具有明显各向异性特征:面割理方向应力敏感性最强,应力敏感性系数和渗透率损害率均最大;垂直煤层理方向应力敏感性最弱,应力敏感性系数和渗透率损害率均最低。有效应力卸载后,不同方向煤岩渗透率恢复率不同,面割理方向最高,达到55.3%,垂直煤层面方向恢复率最低,为40.2%。  相似文献   

4.
为了提高煤层顺层钻孔瓦斯抽采效率,有效抽采半径的确定是关键。基于各向异性煤层瓦斯渗透率测试结果,建立了煤层瓦斯各向渗透异性的气-固耦合渗流模型,数值模拟了不同钻孔方位时瓦斯抽采有效半径的时变规律,分析了钻孔方位对抽采效果的影响。研究结果表明:煤层面割理和端割理方向渗透率均大于垂直层理方向渗透率;钻孔有效抽采半径随抽采时间增加呈幂指数增大;煤层有效抽采区域是以抽采钻孔为中心,最大抽采距离(平行层理方向)为长轴,最小抽采距离(垂直层理方向)为短轴的椭圆。平行层理沿端割理方向抽采孔的瓦斯抽采效果优于平行层理沿面割理方向的抽采孔。  相似文献   

5.
为了获取工作面采动影响下煤体平行层理及垂直层理裂隙方向的瓦斯渗流规律,采用真三轴瓦斯渗透实验装置对层理裂隙煤样进行多级加卸载路径下轴向瓦斯渗流实验。实验表明:煤样在多级加载过程中经历压实、弹性变形和塑性变形3个阶段,2个轴向的瓦斯渗透率均随应力的增加而降低;卸载过程中,2个轴向的瓦斯渗透率均有部分恢复;加卸载下平行层理x轴向的瓦斯渗透率始终大于垂直层理y轴向。实践中在回采工作面前方布置了垂直层理和平行层理方向的2种钻孔考察瓦斯抽采量。实践表明:加卸载条件下层理裂隙煤样2个轴向的瓦斯渗透特性能真实反映受采动影响的煤体内瓦斯渗透规律;但煤样的加卸载过程不完全等同于回采工作面煤层应力"三区"变化过程,回采工作面充分卸压后的煤体各向渗透率均有较大提高。  相似文献   

6.
煤结构异性对瓦斯渗透特性影响的实验研究   总被引:3,自引:0,他引:3  
利用煤岩渗透测试系统,对煤样试件平行层理和垂直层理方向上,进行了不同瓦斯压力下的渗透率测定,结果表明:煤的结构异性对瓦斯渗透特性影响较大,实验煤样在两个方向上的渗透率大小相差约为1个数量级。针对瓦斯在平行煤样层理方向和垂直层理方向上流动特性的差异,建立了煤样瓦斯渗流的串联和并联阻流模型,并就层理构造对瓦斯渗透特性的影响进行了理论分析。  相似文献   

7.
代嘉惠 《煤炭技术》2020,39(6):122-125
为了探讨煤体渗透率的影响因素,利用损伤煤岩体渗流试验系统,进行了不同轴压、围压和瓦斯压力下煤体渗透率的渗流试验。试验结果表明:煤样在相同围压条件下时,渗透率与轴压的关系符合二次多项式函数;煤样在相同轴压条件下时,渗透率与围压的关系符合幂函数;在相同应力情况下,煤样的渗透率随瓦斯压力的升高先降低后升高,呈现"V"字形变化趋势,煤样的临界瓦斯压力值随煤样应力值的增大而增大;煤样轴向渗流的渗透率对围压的敏感性远大于轴压,渗透率对围压的敏感性大约是对轴压的敏感性的8.5倍。  相似文献   

8.
利用含瓦斯煤热流固耦合三轴伺服渗流装置,开展了不同压力条件下CO_2气体在煤层中的渗流特性试验,并探讨了煤岩渗透速率对应力变化响应的敏感性。研究结果表明,在相同轴压不同围压条件下,随着孔隙压力的增大,CO_2渗透速率增大;围压越大,CO_2渗透速率越小;在相同围压不同轴压条件下,随着轴压的增大,CO_2渗透速率随之减小。孔隙压力越大,应力敏感性系数负向增大,煤样对应力的敏感性越好。在不同轴压与围压条件下,随着应力的升高,应力敏感性系数逐渐降低,即应力越高,煤样渗透速率对应力的敏感性越差。  相似文献   

9.
利用自行研制的含瓦斯煤热流固耦合伺服渗流试验装置,以平行和垂直层理2种不同的原煤试样为研究对象,进行相同有效应力、瓦斯压力条件下,不同轴压、围压组合;相同瓦斯压力、静水压力条件下,不同有效应力的渗流试验,探究其变形及渗透率的差异。研究结果表明:平行层理试样沿z方向的裂隙度φz大于垂直层理试样,垂直层理试样的总裂隙度φ大于平行层理试样;煤体中平行层理方向的裂隙度大于垂直层理方向;在静水压力下,平行层理试样渗透率大于垂直层理试样,煤体平行层理方向渗透性高于垂直层理方向;基于平板流体理论,得出了渗透率与径向应变呈二次函数关系,在煤体中平行层理方向的初始裂隙度系数β是垂直层理方向的1.5~2.0倍;当考虑渗流通道为贯通裂隙时,平行层理方向的初始裂隙度φ0与初始裂隙开度平方d20的乘积是垂直层理方向的1.5~2.0倍。  相似文献   

10.
煤体变形和瓦斯渗流的耦合作用是煤矿瓦斯突出机理研究中的重要问题,煤渗透率的变化与其应力状态密切相关。为了理清有效围压对煤体渗透性的影响,对煤样进行了不同瓦斯压力下全应力应变过程的渗透性实验,分析了瓦斯压力对煤样强度和渗透率的影响;针对不同瓦斯压力,设计完成了相同有效围压下三轴压缩力学实验(无瓦斯作用);并利用孔隙介质力学的分析方法,依据应力应变数据计算了煤样孔隙度。研究发现,有效围压相同条件下的煤样孔隙度计算结果与渗透率实验结果的变化趋势一致;在三轴压缩实验条件下,煤样峰值强度前的渗透率降低幅度受有效围压的控制,有效围压越高,渗透率所历经的降低幅度越大。  相似文献   

11.
应力场、温度场瓦斯渗流特性实验研究   总被引:16,自引:0,他引:16  
易俊  姜永东  鲜学福 《中国矿业》2007,16(5):113-116
本文采用自制的渗流实验装置,进行了应力场和温度场作用下瓦斯的渗流特性实验研究,通过实验得出:轴向压力对煤样渗透的影响比围压要小;温度增加煤样的渗透率增加;渗透率与轴向有效应力、有效围压、平均有效应力成负指数关系;通过实验得到了渗透率与应力、温度的表达式。根据达西定律推导出了在地应力场、温度场作用下煤层瓦斯的渗流方程,建立的渗流方程可以模拟井下瓦斯在高地应力、高温下的渗透性质。  相似文献   

12.
应力场、温度场、声场作用下煤层气的渗流方程   总被引:7,自引:0,他引:7       下载免费PDF全文
采用自制的可控声震法煤层气渗流实验系统,研究了不加声场和加声场作用下煤样的渗透特性,研究得出:在不加声场作用下,当矿压、孔隙压力、温度一定时,在煤样应力应变曲线的初始压密阶段和弹性阶段,渗透率随轴向有效应力的增大而减小。在应变硬化阶段,渗透率随轴向有效应力的增大而增大,临近试件破坏时,渗透率骤增;在不加声场作用下,当轴向应力、孔隙压力、温度一定时,煤样渗透率随有效矿压的增大而减小,且呈负指数关系;在声场作用下,当轴向应力、矿压、孔隙压力、温度一定时,声场作用能提高煤样的渗透率,且渗透率随作用时间的增长而增大。在实验研究成果的基础上,建立了应力场、温度场、声场作用下煤层气的渗流方程  相似文献   

13.
鄂尔多斯盆地不同割理方向煤岩应力敏感性研究   总被引:1,自引:0,他引:1  
煤层气开发过程中煤岩应力敏感性对渗透率产生影响,而渗透率的变化直接决定着煤层气资源商业开采的成败。试验测定了鄂尔多斯盆地老坑口矿井煤岩在平行面割理、垂直面割理及垂直层理面3个不同方向的渗透率随有效应力变化情况,对比分析了增压过程和降压过程中不同割理方向煤岩应力敏感性差异。结果表明:不同割理方向煤岩应力敏感强烈阶段有所不同,平行面割理方向应力敏感强烈阶段集中在有效应力小于8 MPa,垂直面割理及垂直层理面则分别在6和4 MPa附近;鉴于煤层气井排采中储层应力敏感效应的影响,提出动液面在接近煤层中深200 m后,谨慎降液排采,同时建议实施减小渗透率降低幅度和时间的排采;基于平行面割理方向煤岩渗透率更有优势,因此,井网长轴平行面割理方向是井网部署合理方向。  相似文献   

14.
受载含瓦斯煤渗透性影响因素分析   总被引:1,自引:0,他引:1  
为了探讨受载含瓦斯煤体渗透性的影响因素,利用自主研制的含瓦斯煤热-流-固-力耦合实验装置,研究了不同有效应力、不同孔隙压力和不同温度条件下煤样瓦斯渗透特性,在考虑吸附变形量、孔隙气体压缩量和温度膨胀变化量的基础上,分别建立了受载煤体渗透性与有效应力、孔隙压力和温度之间的定性定量关系。研究结果表明:1)在温度一定情况下,煤样渗透率随有效应力的增大而呈现负指数变化关系;2)将围压轴压固定,在考虑Klinkenberg效应情况下,煤样渗透率与孔隙压力呈现"V"字型变化关系,并根据实验结果,得到了围压为2.0,3.0 MPa条件下Klinkenberg效应发生的孔隙压力临界值;3)不同温度条件下,有效应力与渗透率并非单调函数,而存在一个转折点,在低应力区,渗透率随温度升高而增大,表现为以向外膨胀为主导;在高应力区,透率随温度升高而降低,表现为以内膨胀为主导;根据实验结果,提出了应力与温度共同影响下的渗透率计算式。  相似文献   

15.
针对目前非达西渗流在含瓦斯煤三轴应力状态下研究较少的问题,基于Forchheimer型非达西渗流理论,采用自行研制的含瓦斯煤准三轴渗流试验装置,研究了2个煤矿的贫煤煤样在不同围压、轴压条件下Forchheimer型非达西渗流特性并计算了相关参数。研究结果表明,三轴应力状态下煤样中瓦斯气体流速随瓦斯压力梯度的变化而出现明显的Forchheimer型效应。相同介质和流体下,瓦斯压力和三轴应力状态成为煤体瓦斯渗透规律的主要影响因素。不同围压、轴压条件下,瓦斯渗透速度会随瓦斯压力的增大而增大,但其渗透速度的增大速率最终会趋于恒定。相同围压下,非达西渗流因子β随轴压的增大而增大,且β越大,压力梯度与渗流速度之间的非线性关系越明显,而非达西渗透系数K值会有减小的趋势。  相似文献   

16.
为分析保德矿区煤体渗透率对层理夹角的响应规律,制备了与层理呈不同角度的煤体试样,利用QTS-2煤岩渗透率测试仪,对不同围压、不同进气压力下的煤体渗透率进行了测试,分析了不同角度下气体渗流的容易区与困难区特征。结果表明:保德矿区煤体渗透率对层理角度的响应规律明显,随着气流方向与层理角度的增大,煤体渗透率呈线性减小的规律,0°角与90°角煤样的渗透率差1~2个数量级;随着围压的增大,煤体渗透率呈幂指数减小规律。煤样渗透率反映的是瓦斯气体沿流动方向的难易程度,在实际的瓦斯抽采工程中,当钻孔平行于层理布置时,煤体瓦斯流动的方向反而使垂直于层理,渗透率最小;当钻孔垂直于层理布置时,煤体瓦斯流动的方向反而平行于层理,渗透率最大。  相似文献   

17.
深部破碎煤岩体受地应力和开采扰动常处于三向应力状态,其渗透特性是影响矿井突水灾害预防和瓦斯抽放的重要因素之一。为研究深部破碎煤体的渗透性能,采用自主研发的破碎岩石三轴渗流试验系统,并设计一套破碎煤体三轴渗流试验方案,进行三轴应力作用下破碎煤体渗流试验,得到破碎煤体渗透特性随围压及孔隙率的演化规律。试验结果表明:①三轴应力作用下破碎煤样渗流雷诺数最大值为47. 58,渗流速度与孔压梯度两者之间符合Forchheimer关系;②三轴应力作用下破碎煤样的孔隙率与围压的变化规律呈负相关,各级轴向位移下,两者服从对数函数关系;③随着有效应力的增大,各粒径下的破碎煤样孔隙率逐渐减小,破碎煤样孔隙率的理论计算值与试验结果较为吻合,表明文中给出的孔隙率计算方法可行;④各级轴向位移下,破碎煤样的渗透率随围压增大而减小,不同粒径的破碎煤样渗透率随围压的演化规律可用k=me~(nσ3)公式表示,颗粒粒径越大,破碎煤样的渗透率随围压的变化越敏感;⑤颗粒粒径及孔隙排列方式影响破碎煤样渗透性能,不同粒径破碎煤样随孔隙率的减小,渗透率整体减小,非Darcy流β因子呈增大趋势,其中渗透率的量级为10~(-14)~10~(-10) m~2,非Darcy流β因子的量级为10~7~10~(11)m~(-1)。所得研究结论有助于增强深部破碎煤岩体渗透特性演化规律的认识。  相似文献   

18.
《煤矿安全》2015,(7):20-23
煤岩割理系统发育,采用巴西劈裂试验测定煤岩抗拉强度时,由于加载方向和面、端割理所呈夹角不同,试验结果离散性较强,无法准确描述煤岩真实的抗拉强度。假设面、端割理相互垂直,基于平面应力弹性力学,推导了割理倾角与煤岩抗拉强度的关系,依此确定了巴西劈裂试验不同劈裂角度下的煤样破坏方式,通过试验对理论计算结果进行验证,两者趋势吻合较好。研究表明:由于煤岩内部割理的存在,煤样不仅会沿加载轴线发生劈裂破坏,当加载方向与割理呈一定角度时,煤样也可能沿着面割理或端割理发生剪切破坏,煤样沿面割理剪切破坏的强度小于沿端割理剪切破坏的强度,二者均小于沿加载轴线劈裂的煤岩真实抗拉强度。  相似文献   

19.
利用自主研制的含瓦斯煤热流固耦合三轴伺服渗流装置,对杉木树煤矿原煤试样进行了不同轴压、围压、瓦斯压力3种应力因素条件下的室内渗流实验,结果表明:当恒定瓦斯压力与围压不变时,煤样渗透率随轴压的增加而呈非线性降低,且围压越高煤样渗透率越小;当恒定瓦斯压力与轴压不变时,煤样渗透率随围压的增加而呈非线性降低,且轴压越大煤样渗透率越小;当恒定轴压与围压不变时,煤样渗透率随瓦斯压力的增加而呈非线性增加。3种应力因素对煤样渗透率的敏感度由大至小依次为:瓦斯压力、围压、轴压。3种应力因素与煤样渗透率的单因素拟合结果显示,3种应力因素与煤样渗透率均呈指数函数关系。  相似文献   

20.
采动裂隙场瓦斯流动是实现深部煤与瓦斯共采的基础。采用WYS-800微机控制电液伺服三轴瓦斯渗流试验装置,对平朔井工一矿14106工作面煤层进行了含瓦斯煤的力学特性和瓦斯渗流试验。结果表明:常规三轴不同瓦斯压力条件下,全应力-应变曲线分为4个阶段:初始压密阶段、线性弹性阶段、屈服阶段、破坏阶段。煤样的渗透率随轴向应变先减小后增大,最后趋于稳定;煤样的偏应力-应变和渗透率-应变曲线呈现相反的趋势,而且常规三轴压缩煤样破坏后渗透率增加量比较少。常规三轴不同围压条件下应力-应变曲线也主要表现为4个阶段。随围压值增大,三轴抗压强度呈线性增加趋势;在相同轴向载荷作用下,煤样所受围压越大,渗透率就越小。从不同围压条件下轴向应力-轴向应变和渗透率-轴向应变曲线可以看出,渗透率随着轴向应变的增大先降低后升高,煤样的峰值强度随着围压升高而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号